שיחה:89-214 תשעג סמסטר א: הבדלים בין גרסאות בדף

מתוך Math-Wiki
שורה 2: שורה 2:
מדובר בתת-חבורה של <math>S_4</math> התמורות הזוגיות.  
מדובר בתת-חבורה של <math>S_4</math> התמורות הזוגיות.  


בקורס בליאנרית, למדתם שהחלפת עמודות של מטריצה משנה מחליפה את הסימן של הדטרמיננטה שלה. יש לנו התאמה בין תמורות למטריצות באופן הבא: עבור תמורה <math>\sigma</math> ניקח מתטריצה שהמודה ה-i שלה היא <math>e_{\sigma(i)}</math>, כאשר <math>e_{\sigma(i)}</math> הוא וקטור שרכיב ה-<math>\sigma(i)</math> שלו הוא 1 והשאר אפסים. על ידי חישוב פשוט ניתן להשתכנע שזה שיכון (הומומורפיזם חח"ע) של <math>S_n</math> לתוך חבורת המטריצות ההפיכות, <math>GL_n</math>. אוסף כל המטריצות כאלה עם דטרמיננטה 1 היא <math>A_n</math>.  
בקורס בליאנרית, למדתם שהחלפת עמודות של מטריצה מחליפה את הסימן של הדטרמיננטה שלה. יש לנו התאמה בין תמורות למטריצות באופן הבא: עבור תמורה <math>\sigma</math> ניקח מתטריצה שהמודה ה-i שלה היא <math>e_{\sigma(i)}</math>, כאשר <math>e_{\sigma(i)}</math> הוא וקטור שרכיב ה-<math>\sigma(i)</math> שלו הוא 1 והשאר אפסים. על ידי חישוב פשוט ניתן להשתכנע שזה שיכון (הומומורפיזם חח"ע) של <math>S_n</math> לתוך חבורת המטריצות ההפיכות, <math>GL_n</math>. אוסף כל המטריצות כאלה עם דטרמיננטה 1 היא <math>A_n</math>.  


מה זה אומר בפועל? כל מטריצה כזו מתקבלת על ידי החלפת עמודות מספר זוגי של פעמים, שזה בעצם אומר שהתמורה מתקבלת כמכפלה של חילופים מאורך זוגי.  
מה זה אומר בפועל? כל מטריצה כזו מתקבלת על ידי החלפת עמודות מספר זוגי של פעמים, שזה בעצם אומר שהתמורה מתקבלת כמכפלה של חילופים מאורך זוגי.  

גרסה מ־20:31, 16 בדצמבר 2012

מה זה [math]\displaystyle{ A_4 }[/math]?

מדובר בתת-חבורה של [math]\displaystyle{ S_4 }[/math] התמורות הזוגיות.

בקורס בליאנרית, למדתם שהחלפת עמודות של מטריצה מחליפה את הסימן של הדטרמיננטה שלה. יש לנו התאמה בין תמורות למטריצות באופן הבא: עבור תמורה [math]\displaystyle{ \sigma }[/math] ניקח מתטריצה שהמודה ה-i שלה היא [math]\displaystyle{ e_{\sigma(i)} }[/math], כאשר [math]\displaystyle{ e_{\sigma(i)} }[/math] הוא וקטור שרכיב ה-[math]\displaystyle{ \sigma(i) }[/math] שלו הוא 1 והשאר אפסים. על ידי חישוב פשוט ניתן להשתכנע שזה שיכון (הומומורפיזם חח"ע) של [math]\displaystyle{ S_n }[/math] לתוך חבורת המטריצות ההפיכות, [math]\displaystyle{ GL_n }[/math]. אוסף כל המטריצות כאלה עם דטרמיננטה 1 היא [math]\displaystyle{ A_n }[/math].

מה זה אומר בפועל? כל מטריצה כזו מתקבלת על ידי החלפת עמודות מספר זוגי של פעמים, שזה בעצם אומר שהתמורה מתקבלת כמכפלה של חילופים מאורך זוגי.

לדוגמה: מחזור באורך 3 מתקבל כמפלה של 2 חילופים, [math]\displaystyle{ (ab)(bc)=(abc) }[/math] לכן זוגי. תמורה שמבנה המחזורים שלה הוא 2 חילופים זרים, היא גם זוגית. מחזור באורך 4 אינו זוגי. [math]\displaystyle{ (ab)(bc)(cd)=(abcd) }[/math]