שינויים

קפיצה אל: ניווט, חיפוש
== הבעיה ==באי ב[https://en.wikipedia.org/wiki/Knights_and_Knaves חידות אבירים ונוכלים (Knights and Knaves)] מדברים על אי מסוים בו כל התושבים הם או אבירים, הדוברים תמיד אמת, או נוכלים, אשר תמיד משקרים. בחלק מהבעיות מוסיפים סוג נוסף – מרגלים, שעונים אמת או שקר באקראי, אך לא נעסוק בהם. החידות דנות באורח באי המנסה להסיק מספר מסקנות – לרוב את הסוג של כמה מהתושבים – על סמך כמה עובדות (שמרביתן מהצורה "תושב <math>X</math> טען ש־<math>P</math>") ו/או על סמך שאלות כן/לא שעליו לשאול.
* '''דוגמה 1:''' האורח נתקל בתושבים <math>A,B,C,D</math>. אין מרגלים, וידוע ידוע ש־<math>A,C</math> מסוגים שונים. <math>A</math> טוען ש־<math>B,C</math> מאותו סוג, <math>B</math> טוען ש־<math>A</math> אביר ו־<math>C</math> טוען שהוא מאותו סוג כמו <math>D</math>. מה הסוג של כל תושב?* '''דוגמה 2:''' האורח נתקל בשלושה תושבים. , והשלישי שבהם טוען שלפחות אחד מהם משני התושבים האחרים הוא אביר, אחד נוכל ואחד מרגל. אילו 3 2 שאלות של כן/לא הוא יכול האורח לשאול את התושבים על מנת לגלות להסיק את הסוג של כל אחד מהםהסוגים שלהם?
נרצה ליצור ניצור מודל מתמטי לפתרון בעיות מסוג זה.
== חידות ללא מרגלים ==__תוכן__{| class="wikitable" style="direction:ltr; float:left; margin-top: 0;"
! <math>P</math> !! <math>Q</math> !! <math>P\leftrightarrow Q</math>
|-
| 1 || 1 || 1
|}
באלגברה בוליאנית מסמנים <math>1</math> כפסוק אמת ו־<math>0</math> כפסוק שקר. באופן דומה, אם תושב <math>X</math> הוא אביר אז נסמנו כ־<math>1</math> ואם נוכל – <math>0</math>. נעזר בסימון <math>\leftrightarrow</math> לציון אופרטור שקילות לוגית, המוגדר כמפורט בטבלה שמשמאל. <math>\Leftrightarrow=</math> הוא יחס שקילות בין כל שני פסוקים שקולים לוגית, כלומר אם ידוע ש־<math>P\leftrightarrow Q</math> נותן 1 אז נוכל לסמן <math>P\Leftrightarrow =Q</math>. אם תושב <math>X</math> הוא אביר אז נסמן <math>X=1</math> ואם נוכל – <math>X=0</math>. לפיכך, אם <math>X</math> טוען ש־טענה <math>P</math> אז <math>X\Leftrightarrow =P</math>.
:'''דוגמה 1.1:''' באמצעות סימונים אלו נציג את ''דוגמה 1'' כמערכת משוואות בוליאניות. <math>A</math> טוען ש־<math>B,C</math> מאותו סוג, כלומר הוא טוען <math>B\leftrightarrow C</math>. מכך נובעת משוואה (1) במערכת המשוואות הבאה. מהטענות של <math>B,C</math> נובעות המשוואות (2) ו־(3), ומהעובדה ש־<math>A,C</math> שונים נובעת משוואה (4):
{{left|<math>\begin{array}{llcl}
(1)&A\leftrightarrow B\leftrightarrow C&\Leftrightarrow=&1\\(2)&B\leftrightarrow A\leftrightarrow1&\Leftrightarrow=&1\\(3)&C\leftrightarrow C\leftrightarrow D&\Leftrightarrow=&1\\(4)&A\leftrightarrow C&\Leftrightarrow=&0\end{array}</math>}}:באופן שקול:
{{left|<math>\begin{array}{llcl}
(1)&A\nleftrightarrow B\nleftrightarrow C&\Leftrightarrow=&1\\(2)&A\nleftrightarrow B&\Leftrightarrow=&0\\(3)&D&\Leftrightarrow=&1\\(4)&A\nleftrightarrow C&\Leftrightarrow=&1\end{array}</math>}}:כאשר <math>\nleftrightarrow</math> מציין אופרטור XOR, המסומן גם כ־<math>\oplus</math>. בסימונים אלו נגדיר ''עובדה'' בתור משוואה בוליאנית שנתונה בחידה, כגון <math>A\leftrightarrow C=0</math> מ''דוגמה 1''.
=== חידות ללא שאלות ===
==== פתרון כמערכת משוואות ====
ברגע שיש לנו ניסוח מתמטי של החידה כמערכת משוואות קל אפשר לפתור אותהכפי שעושים באלגברה בוליאנית. אנו נתעמק בחידות שניתן לפתור כמערכת משוואות לינאריות כיוון שהן נותנות מידע רב יותר על החידה, כפי שנראה בהמשך.
ניצור איזומורפיזם מהשדה <math>(\mathbb Z_2,+,\cdot)</math> ל־<math>(\{0,1\},\nleftrightarrow,\and)</math> ע״י <math>x\mapsto\begin{cases}0,&x=[0]_2\\1,&x=[1]_2\end{cases}</math>. מכך נובע ש־<math>(\{0,1\},\nleftrightarrow,\and)</math> שדה. סכום <math>\sum_{i=1}^m P_i</math> (כאשר <math>\forall i:\ P_i\in\{1,0,1\}</math>) יוגדר בתור <math>P_1\nleftrightarrow\dots\nleftrightarrow P_m</math> ומכפלה <math>\prod_{i=1}^m P_i</math> בתור <math>P_1\and\dots\and P_m</math>. גם כפל מטריצות מוגדר בהתאם.
כעת, אם התושבים הם <math>X_1,\dots,X_n</math> אז נסמן <math>\mathbf x:=\begin{pmatrix}X_1\\\vdots\\X_n\end{pmatrix}</math>. אם כל <math>P_i</math> מייצג נעלם <math>X_j</math> או קבוע <math>1,0</math> אז נוכל להציג כל <math>P_1\nleftrightarrowleftrightarrow\dots\nleftrightarrow leftrightarrow P_n\Leftrightarrow =P_{n+1}</math> בתור סכום של נעלמים שונים השווה לקבוע: לדוגמה, <math>B\leftrightarrow A\leftrightarrow0\Leftrightarrow1leftrightarrow1=1</math> מהניסוח המתמטי של ''דוגמה 1'' שקול ל־<math>A\nleftrightarrow B\Leftrightarrow1=0</math>, כלומר ל־<math>\sum_{X_i\in\{A,B\}}X_i\Leftrightarrow1=0</math>. לכן נוכל להגדיר מטריצת מקדמים <math>\mathbf A</math> ווקטור מקדמים חופשיים <math>\mathbf b</math> כך ש־<math>\mathbf{Ax}\Leftrightarrow=\mathbf b</math>.
:'''דוגמה 1.2:''' ההצגה המטריציונית של ''דוגמה 1'' היא{{left|<math>\underbrace\begin{pmatrix}1&1&1&0\\1&1&0&0\\0&0&0&1\\1&0&1&0\end{pmatrix}_\mathbf A\underbrace\begin{pmatrix}A\\B\\C\\D\end{pmatrix}_\mathbf x\Leftrightarrow=\underbrace\begin{pmatrix}1\\0\\1\\1\end{pmatrix}_\mathbf b</math>}}
הצגה זו מאפשרת לנו למצוא מה הסוג של כל תושב ע״י פתרון מערכת משוואות לינאריות. יתרה מזאת, לפי משפט רושה–קפלי (Rouché–Capelli) יש פתרון ל־<math>\mathbf{Ax}=\mathbf b</math> אם״ם <math>\mathbf b\in\operatorname{span}\left\{\operatorname{Col}_i(\mathbf A)\right\}_{i=1}^n</math> כאשר <math>\operatorname{Col}_i(\mathbf A)</math> העמודה ה־<math>i</math> של <math>\mathbf A</math>, ואם כן אז מרחב הפתרונות הוא ממימד <math>n-\operatorname{rank}(\mathbf A)</math>. מכאן נובע שאנו יכולים לבדוק האם קיים פתרון לחידה, ואם כן לחשב את מספר הפתרונות בתור <math>2^{n-\operatorname{rank}(\mathbf A)}</math>. מובן שבד״כ יש רק פתרון אחד, כלומר <math>\operatorname{rank}(\mathbf A)=n</math> ואז, אם ל־<math>\mathbf A</math> יש <math>n</math> שורות אז היא הפיכה. אם לא אז ניתן למחוק כמה שורות של <math>\mathbf A</math> (וגם את השורות המתאימות ב־<math>\mathbf b</math>) כך שהיא תהיה הפיכה.
:'''דוגמה 1.3:''' נפתור את ''דוגמה 1''. חישוב פשוט מראה ש־<math>\mathbf A</math> הפיכה (ומכאן שיש פתרון יחיד) ו־<math>\mathbf A^{-1}\Leftrightarrow=\begin{pmatrix}1&1&0&1\\1&0&0&1\\1&1&0&0\\0&0&1&0\end{pmatrix}</math>. לכן <math>\mathbf x\Leftrightarrow=\mathbf A^{-1}\mathbf b\Leftrightarrow=\begin{pmatrix}0\\0\\1\\1\end{pmatrix}</math> – התושבים <math>A,B</math> נוכלים ו־<math>C,D</math> אבירים.
==== פתרון באמצעות ניחוש ====
מנחשים את סוגו של אחד מהתושבים ומציבים במשוואות. אם מגיעים לסתירה אז יש להחליף את הסוג שנבחר ולפתור מחדש, אחרת נקבל מערכת משוואות פשוטה יותר. אם המערכת הזו עוד לא נותנת פתרון יחיד יש להמשיך לנחש עד לפתרון הסופי. אם החלפנו ניחוש ושוב הגענו לסתירה אז אין פתרון.
:'''דוגמה 1.4:''' ננחש ש־<math>A</math> מ''דוגמה 1'' הוא אביר. מ־(2) נובע ש־<math>B</math> אביר ומ־(4) ש־<math>C</math> נוכל, אך זה סותר את (1) ולכן <math>A</math> נוכל. הצבה מחדש נותנת ש־<math>B</math> נוכל ו־<math>C,D</math> אבירים, וקיבלנו פתרון יחיד.
באופן כללי זו שיטה קלה יותר. אחד מהחסרונות שלה הוא שקשה למצוא באמצעותה את מספר הפתרונות, מה שעושים ע״י בדיקת היתכנות הסוג השני לכל תושב שניחשנו לו סוג.
:'''דוגמה 3:''' האורח נתקל בתושבים <math>A,B,C</math>, שאינם מרגלים. <math>A</math> טוען ש־<math>B</math> נוכל וש־וגם <math>C</math> אביר, כלומר <math>A\leftrightarrow(\neg B\and C)\Leftrightarrow1=1</math>. אם ננחש ש־<math>A</math> אביר נקבל פתרון יחיד, אך אם ננחש שהוא נוכל נקבל ש־<math>\neg B\and C\Leftrightarrow0=0</math>. במקרה הזה אפשר לנחש ש־<math>B</math> נוכל (ולקבל פתרון יחיד) או אביר (ולקבל שני פתרונות). מספר הפתרונות הוא אם כן <math>\underbrace1_{A\text{ is a knight}}+\underbrace{\underbrace1_overbrace1^{B\text{ is a knave}}+\underbrace2_overbrace2^{B\text{ is a knight}}}_{A\text{ is a knave}}=4</math>. זו מערכת לא המערכת אינה לינארית ולכן לא ניתן לפתור אותה בשיטה של לחשב את מספר הפתרונות באמצעות משפט רושה–קפלי.
חיסרון מהותי יותר הוא ששינוי של <math>\mathbf b</math> דורש פתרון מחדש של הבעיה כולה. <!---->כמו כן, הפתרון לא נותן לנו את התובנות שקיבלנו מפתרון כמערכת אנו נעזר בפתרון באמצעות מערכת משוואות לינאריות, תובנות שיעזרו לנו בחידות שבהן שואלים שאלות. <!---->
=== חידות עם שאלות ===
במקרה שאין מרגלים ואין עובדות החידות האלה טריוויאליות – ניתן לשאול כל תושב ''שאלה'' היא פסוק לוגי שאנחנו יכולים לבחור ותלוי בסוגים של תושבים. למשל, את השאלה "האם 1<math>X_2</math> אביר?" שמופנת ל־<math>X_1</math> נייצג בתור <math>X_1\leftrightarrow X_2</math>, ואת השאלה "<math>X_1</math>, האם 3=13?" (או כל שאלה אחרת שהתשובה לה ידועה) ולהסיק את סוגובתור <math>X_1\leftrightarrow1=X_1</math>. זאת כמובן כאשר נסמן כ־<math>n</math> את מספר השאלות התושבים ונניח שמותר לשאול הוא לכל הפחות מספר התושביםעד <math>m</math> שאלות. נסמן <math>\mathbf q=\begin{pmatrix}Q_1\\\vdots\\Q_m\end{pmatrix}</math> כווקטור השאלות. ''תשובה'' תוגדר כערך בוליאני השקול לוגית לשאלה ששאלנו, מה שחייב להתקיים אם החידה פתירה: אם יש ונסמן ב־<math>n\mathbf r=\begin{pmatrix}r_1\\\vdots\\r_m\end{pmatrix}</math> תושבים אז יש את וקטור התשובות. מההגדרות נובע ש־<math>2^n\mathbf q=\mathbf r</math>. <math>\mathbf x</math> מוגדר כמקודם, ואז ניתן לחשוב על <math>\mathbf q</math> כעל פונקציה <math>\mathbf x\mapsto\mathbf r</math> אפשרויות לחלוקת הסוגים שלהם.
:'''דוגמה 2.1:''' יש 3 תושבים (<!----math>n=3</math>), מותר לשאול עד 2 שאלות (<math>m=2</math>) ו־<math>X_3</math> טוען ש־<math>X_1</math> ו/או <math>X_2</math> אבירים, דהיינו <math>X_3\leftrightarrow(X_1\or X_2)=1</math>. וקטור השאלות <math>\mathbf q=\begin{pmatrix}X_1\leftrightarrow X_2\\X_1\end{pmatrix}</math>, לדוגמה, מאפשר לפתור את החידה כי תמיד מתקיים <math>\mathbf x=\begin{pmatrix}r_2\\r_1\leftrightarrow r_2\\r_2\or (r_1\leftrightarrow r_2)\end{pmatrix}=\begin{pmatrix}r_2\\r_1\leftrightarrow r_2\\r_1\rightarrow r_2\end{pmatrix}</math>.
== חידות עם מרגלים ==בחידות מסוג זה נתונות עובדות, ונסמן כ־<!----math>=== חידות ללא S</math> את קבוצת הפתרונות <math>\mathbf x</math> המקיימים אותן. בד״כ המטרה היא למצוא <math>\mathbf q</math> חח״ע מ־<math>S</math>, כלומר למצוא שאלות שעבורן לכל וקטור תשובות <math>\mathbf r=\mathbf q(\mathbf x)</math> ניתן יהיה להסיק את וקטור הסוגים של התושבים, <math>\mathbf x==\mathbf q^{-1}(\mathbf r)</math>. יהי <!--math>k\in\mathbb N\cup\{0\}</math> המספר המינימלי כך ש־<math>|S|\le2^k</math>. נוכיח ש־<math>k\le m</math>: החידה פתירה, כלומר קיים וקטור שאלות <math>\mathbf q</math> חח״ע מ־<math>S</math>. <math>\mathbf q</math> היא פונקציה על קבוצת וקטורי התשובות ולפיכך יש <math>|S|</math> אפשרויות ל־<math>\mathbf r</math>. מאידך, <math>\mathbf q</math> מורכבת מ־<math>m</math> שאלות ולכל אחת יש עד 2 תשובות אפשריות, לכן יש עד <math>2^m</math> אפשרויות ל־<math>\mathbf r</math>, דהיינו <math>2^{k-1}<|S|\le2^m</math>. נקבל <math>k-1<m</math> ולבסוף <math>k\le m</math> כי <math>k,m\in\mathbb Z</math>. {{משל}} ==== פתרון כמערכת משוואות מערכת עובדות לינאריות ====במקרה זה <!----math>S=\{\mathbf x:\ \mathbf A\mathbf x=\mathbf b\}</math>. אם שורות המטריצה <math>\mathbf A</math> תלויות לינארית ניתן למחוק כמה מהן (וגם את השורות המתאימות ב־<math>\mathbf b</math>) כך ששורותיה יהיו בת״ל ו־<math>S</math> לא תשתנה. לכן נניח בה״כ ששורות <math>\mathbf A</math> בת״ל. :'''דוגמה 4.1:''' <math>n=4</math> ונתון{{left|<math>\begin{pmatrix}1&1&1&0\\0&0&0&0\\1&1&0&0\\0&0&1&0\end{pmatrix}\mathbf x= פתרון באמצעות ניחוש \begin{pmatrix}1\\0\\0\\1\end{pmatrix}</math>}}:השורה השנייה במערכת זו מיותרת והשורה הרביעית היא סכום השורה הראשונה והשלישית. לכן נמחק את שורות 2,4 ונקבל{{left|<math>\underbrace\begin{pmatrix}1&1&1&0\\1&1&0&0\end{pmatrix}_\mathbf A\mathbf x=\underbrace\begin{pmatrix}1\\0\end{pmatrix}_\mathbf b</math>}} נשים לב שלפי משפט רושה–קפלי <math>|S|=2^{n-\operatorname{rank}(\mathbf A)}=2^k</math> ולכן <math>\operatorname{rank}(\mathbf A)=n-k<!---/math>. השורות של <math>\mathbf A</math> בת״ל ולכן יש לה <math>n-k</math>שורות. כדי לפתור את החידה נבחר <math>\mathbf Q\in\{0,1\}^{k\times n}</math> כך ש־<math>\begin{pmatrix}\mathbf A\\\mathbf Q\end{pmatrix}</math> מטריצה הפיכה, ואז <math>\mathbf q=\mathbf Q\mathbf x</math> ו־<math>\mathbf x== חידות עם שאלות ===\begin{pmatrix}\mathbf A\\\mathbf Q\end{pmatrix}^{-1}\begin{pmatrix}\mathbf b\\\mathbf r\end{pmatrix}<!---/math>. לשם כך צריך להראות שקיימת <math>\mathbf Q</math> כנ״ל, אבל זה די טריוויאלי: השורות של <math>\mathbf A</math> בת״ל ולכן הן בסיס לתת־מרחב של <math>\{0,1\}^{1\times n}</math> ממימד <math>k</math>. נבחר בסיס כלשהו ל[http://en.wikipedia.org/wiki/Orthogonal_complement תת־מרחב המשלים האורתוגונלי] לו ונציב את איבריו כשורות מטריצה <math>\mathbf Q</math>. אזי <math>\begin{pmatrix}\mathbf A\\\mathbf Q\end{pmatrix}\in\{0,1\}^{(n-k+k)\times n}=\{0,1\}^{n\times n}</math>מטריצה ריבועית ששורותיה בת״ל, כלומר היא הפיכה. {{משל}}
== מקורות והשראות =={{left|* [https://en'''דוגמה 4.wikipedia.org/wiki/Knights_and_Knaves Knights and Knaves]* [https2:''' עלינו למצוא את הסוגים של כל התושבים בדוגמה 4 במינימום שאלות, כלומר ב־<math>k=n-\operatorname{rank}(\mathbf A)=2</math> שאלות (הוכחה ש־<math>k</en.wikipediamath> הוא המספר המינימלי הדרוש של שאלות – בהמשך).orgשני וקטורי שורה שאינם תלויים לינארית ב־<math>\begin{pmatrix}1&1&1&0\end{pmatrix},\begin{pmatrix}1&1&0&0\end{pmatrix}</wiki/The_Hardest_Logic_Puzzle_Ever The Hardest Logic Puzzle Ever]* [https:math> הם לדוגמה <math>\begin{pmatrix}0&0&0&1\end{pmatrix},\begin{pmatrix}1&0&1&0\end{pmatrix}</math> ולכן <math>\mathbf q=\begin{pmatrix}X_4\\X_1\nleftrightarrow X_3\end{pmatrix}</enmath> וקטור שאלות מתאים.wikipedia.org/wiki/Fuzzy_logic Fuzzy logic]* [https://en.wikipedia.org/wiki/Many<math>\begin{pmatrix}\mathbf A\\\mathbf Q\end{pmatrix}^{-valued_logic Many1}=\begin{pmatrix}1&1&1&0\\1&1&0&0\\0&0&0&1\\1&0&1&0\end{pmatrix}^{-valued logic]* [https://en.wikipedia.org1}=\begin{pmatrix}1&1&0&1\\1&0&0&1\\1&1&0&0\\0&0&1&0\end{pmatrix}</wiki/Three-valued_logic Three-valued logic]math> והפתרון הכללי הוא <math>\mathbf x=\begin{pmatrix}1&1&0&1\\1&0&0&1\\1&1&0&0\\0&0&1&0\end{pmatrix}\begin{pmatrix}1\\0\\\mathbf r\!\!\!\!\!\begin{matrix}&\\&\end{matrix}\end{pmatrix}</math>.
==== המספר המינימלי של שאלות ====נניח ש־<!-- סיבוכיות? math>m</math> הוא המספר המינימלי של שאלות הדרוש לפתרון חידת שאלות נתונה ונרצה להוכיח ש־<math>m=k=\lceil\log_2(|S|)\rceil</math>: תהי <math>V=\{\mathbf x:\ \mathbf A\mathbf x=\mathbf 0\}</math> כך ש־<math>\mathbf A\in\{0,1\}^{(n-k)\times n}</math> מטריצה כרצוננו ששורותיה בת״ל. לכן <math>|V|=2^{n-\operatorname{rank}(\mathbf A)}=2^k</math> ובפרט קיימת פונקציה <math>f:S\to V</math> חח״ע. תהי <math>\mathbf Q\in\{0,1\}^{k\times n}</math> מטריצה כך ש־<math>\begin{pmatrix}\mathbf A\\\mathbf Q\end{pmatrix}</math> הפיכה ואז <math>\mathbf q':\mathbf v\mapsto\mathbf Q\mathbf v</math> חח״ע מ־<math>V</math>. נגדיר <math>\mathbf q=\mathbf q'\circ f</math> ולכן <math>\mathbf q</math> חח״ע מ־<math>S</math> והיא מורכבת מ־<math>k</math> שאלות, כלומר <math>k\ge m</math>. בעבר הוכחנו ש־<math>k\le m</math> ולכן <math>m=k</math>. {{משל}}