קוד:גבול היחס בין סינוס לפונקציה לינארית ב-0: הבדלים בין גרסאות בדף
Ofekgillon10 (שיחה | תרומות) (יצירת דף עם התוכן "בחלק זה אנחנו הולכים להוכיח גבול מאוד חשוב שיעזור לנו בהמשך, גבול מהצורה $\frac00 $. \begin{theorem}...") |
מ (גרסה אחת יובאה) |
(אין הבדלים)
|
גרסה מ־20:15, 4 באוקטובר 2014
בחלק זה אנחנו הולכים להוכיח גבול מאוד חשוב שיעזור לנו בהמשך, גבול מהצורה $\frac00 $.
\begin{theorem} $\lim_{x\to 0} \frac{\sin x}{x} = 1 $ \end{theorem}
\begin{proof} זוהי פונקציה זוגית ולכן אפשר להסתכל רק על התחום $x>0$ . נסתכל על קשת מעגל היחידה עם זווית מרכזית של $x$ ונראה כי מתקיים $\sin(x) \leq x \leq \tan (x) \Rightarrow 1<\frac{x}{\sin x} < \frac{\tan x}{\sin x} =\frac{1}{\cos x} $ ומשום שהקצוות שואפים ל-1 כש- $x\to 0 $, ממשפט הסנדוויץ' נקבל שגם $\frac{x}{\sin x} $ שואף ל-1. המסקנה היא ש- $\lim_{x\to 0} \frac{\sin x}{x} = \frac{1}{1}=1 $ \end{proof}