קוד:נגזרות חד צדדיות: הבדלים בין גרסאות בדף
Ofekgillon10 (שיחה | תרומות) (יצירת דף עם התוכן "\begin{definition} מגדירים את $f'_+ (x_0)=\lim_{x\to x_0^+} \frac{f(x)-f(x_0)}{x-x_0} $ ואת $f'_- (x_0)=\lim_{x\to x_0^-} \frac{f(x)-f(x_0)}{x-x_0} $...") |
Ofekgillon10 (שיחה | תרומות) אין תקציר עריכה |
||
שורה 7: | שורה 7: | ||
$f(x)=|x| \Rightarrow f'_+(0)=\frac{x-0}{x-0}=1 , f'_-(0)=\frac{-x-0}{x-0}=-1 $ ולפי המשפט הבא קל לראות מזה מדוע אין נגזרת בנקודה $x=0$ לפונקציית הערך המוחלט. | $f(x)=|x| \Rightarrow f'_+(0)=\frac{x-0}{x-0}=1 , f'_-(0)=\frac{-x-0}{x-0}=-1 $ ולפי המשפט הבא קל לראות מזה מדוע אין נגזרת בנקודה $x=0$ לפונקציית הערך המוחלט. | ||
\begin{ | \begin{thm} | ||
$f'(x_0) $ קיים אם ורק אם קיימות הנגזרות החד צדדיות (והן שוות לנגזרת). | $f'(x_0) $ קיים אם ורק אם קיימות הנגזרות החד צדדיות (והן שוות לנגזרת). | ||
\end{ | \end{thm} | ||
\begin{proof} | \begin{proof} | ||
ראינו כי גבול קיים אם ורק אם הגבולות החד צדדיים שווים, בפרט לפונקציה $\frac{f(x)-f(x_0)}{x-x_0} $ | ראינו כי גבול קיים אם ורק אם הגבולות החד צדדיים שווים, בפרט לפונקציה $\frac{f(x)-f(x_0)}{x-x_0} $ | ||
\end{proof} | \end{proof} |
גרסה מ־15:23, 29 באוגוסט 2014
\begin{definition} מגדירים את $f'_+ (x_0)=\lim_{x\to x_0^+} \frac{f(x)-f(x_0)}{x-x_0} $ ואת $f'_- (x_0)=\lim_{x\to x_0^-} \frac{f(x)-f(x_0)}{x-x_0} $ להיות הנגזרות החד צדדיות (נגזרת מימין ומשמאל) של $f(x) $ \end{definition}
דוגמה:
$f(x)=|x| \Rightarrow f'_+(0)=\frac{x-0}{x-0}=1 , f'_-(0)=\frac{-x-0}{x-0}=-1 $ ולפי המשפט הבא קל לראות מזה מדוע אין נגזרת בנקודה $x=0$ לפונקציית הערך המוחלט.
\begin{thm} $f'(x_0) $ קיים אם ורק אם קיימות הנגזרות החד צדדיות (והן שוות לנגזרת). \end{thm}
\begin{proof} ראינו כי גבול קיים אם ורק אם הגבולות החד צדדיים שווים, בפרט לפונקציה $\frac{f(x)-f(x_0)}{x-x_0} $ \end{proof}