קוד:ערכים עצמיים ווקטורים עצמיים של אופרטורים: הבדלים בין גרסאות בדף
מ (4 גרסאות יובאו) |
אין תקציר עריכה |
||
(גרסת ביניים אחת של אותו משתמש אינה מוצגת) | |||
שורה 5: | שורה 5: | ||
\end{definition} | \end{definition} | ||
\begin{definition} | \begin{definition} | ||
שורה 21: | שורה 17: | ||
\end{definition} | \end{definition} | ||
המשמעות זהה למטריצות - אילו וקטורים האופרטור מותח או מכווץ. | |||
\begin{thm} | \begin{thm} | ||
שורה 51: | שורה 49: | ||
\end{proof} | \end{proof} | ||
גרסה אחרונה מ־08:27, 5 באוקטובר 2014
\begin{definition}
\textbf{אופרטור לינארי} $T:V\rightarrow V$ הוא העתקה לינארית מ-$V$ לעצמו.
\end{definition}
\begin{definition}
יהי $T:V\rightarrow V$ אופרטור לינארי. אומרים ש-$ \lambda \in\mathbb{F}$ הוא \textbf{ערך עצמי} (ע"ע) של האופרטור $T$ אם קיים $0\ne v\in V$ שעבורו $Tv=T(v)=\lambda v $. הוקטור $v$ נקרא \textbf{וקטור עצמי} (ו"ע) של $T$ הקשור ל-$\lambda $.
\end{definition}
המשמעות זהה למטריצות - אילו וקטורים האופרטור מותח או מכווץ.
\begin{thm}
יהי $T:V\rightarrow V$ אופרטור לינארי, יהי $B=\left \{ v_1,\dots,v_n \right \} $ בסיס של $V$ ותהי $A$ המטריצה המייצגת של $T$ יחסית ל-$B$ . אזי אם $\lambda \in\mathbb{F}$ הוא ערך עצמי של $T$, הוא גם ערך עצמי של $A$ .
\end{thm}
\begin{proof}
נסמן $$\left [ v \right ]_B=\left ( \begin{matrix} \alpha_1\\ \vdots\\ \alpha_n \end{matrix} \right )$$ $A$ היא המטריצה המייצגת של $T$ יחסית ל-$B$, ולכן $Tv=A\cdot \left [ v \right ]_B$ . $\lambda$ ע"ע של $T$, אזי קיים $v\neq 0$ כך ש-$Tv=\lambda v$, זאת אומרת $A\cdot\left [ v \right ]_B=\lambda \left [ v \right ]_B$, ולכן $\lambda$ ע"ע של $A$.
\end{proof}