88-195 בדידה לתיכוניסטים תשעא/מערך שיעור/שיעור 1.5: הבדלים בין גרסאות בדף

מתוך Math-Wiki
שורה 55: שורה 55:
שזה הטענה עבור <math>n+1</math> וסיימנו.
שזה הטענה עבור <math>n+1</math> וסיימנו.


==עיקרון הסדר הטוב ==
==סדר טוב ==


הגדרה:
הגדרה: יהי <math>R</math> יחס סדר חלקי על קבוצה <math>A</math>.


תהא <math>A</math> קבוצה עם יחס סדר חלקי <math>R</math> על <math>A</math>.
<math>R</math> יקרא '''סדר טוב''' אם לכל <math>\emptyset \neq B\subseteq A</math> קיים איבר מינימום/הכי קטן/ראשון ב <math>B</math>.


<math>R</math> יקרא סדר טוב אם לכל <math>\emptyset \neq B\subseteq A</math> קיים איבר מינימום/הכי קטן/ראשון ב <math>B</math>.
מינוח: נאמר כי <math>A</math> '''סדורה היטב'''.


מינוח: נאמר כי <math>A</math> סדורה היטב.
דוגמא: כל סדר חלקי על קבוצה '''סופית''' הוא סדר טוב, שכן כל תת קבוצה היא בעצמה סופית.


דוגמא (אינטואיטיבית):
===עקרון הסדר הטוב===
נסתכל על <math>(\mathbb{N},\le)</math> - קבוצת הטבעיים עם יחס הסדר "קטן שווה" הסטנדרטי.


נסתכל על <math>\mathbb{N}</math> קבוצת הטבעיים עם יחס הסדר "קטן שווה" הסטנדרטי.
אינטואיטיבית, אכן מתקיים כי לכל קבוצה לא ריקה של טבעיים קיים איבר ראשון - "אם 1 שם, הוא הקטן ביותר; אם 2 שם, הוא הקטן ביותר; ''ממשיכים כך'' עד שמגיעים לאיבר כלשהו (כי הקבוצה לא ריקה), והוא הקטן ביותר".


אזי אכן מתקיים כי לכל קבוצה לא ריקה של טבעיים קיים איבר מינימום בקבוצה.
פורמלית, טענה זו, הנקראת '''עקרון הסדר הטוב''', והיא '''שקולה''' לטענת (/אקסיומת) האינדוקציה.




דוגמא נוספת:
דוגמא נוספת: ניתן להגדיר אל <math>\mathbb{Q}_+</math> יחס סדר חלקי לפי התמונה הבא (כאשר מזהים כל שבר עם זוג סדור ומבטלים את החזרות המיותרות)
 
ניתן להגדיר אל <math>\mathbb{Q}_+</math> יחס סדר חלקי לפי התמונה הבא (כאשר מזהים כל שבר עם זוג סדור ומבטלים את החזרות המיותרות)


[[קובץ:NutualSquareEqNutural.jpeg]]
[[קובץ:NutualSquareEqNutural.jpeg]]
שורה 90: שורה 89:
תרגיל:
תרגיל:


תהא <math>A</math> קבוצה בת מנייה. הוכח כי ניתן לסדר אותה היטב.
תהא <math>A</math> קבוצה בת מנייה. הוכח כי ניתן לסדר אותה היטב (בהינתן עקרון הסדר הטוב).


פתרון:
פתרון:


לפי הנתון קיימת פונקציה חח"ע וכל <math>f:A\to \mathbb{N} </math>.
לפי הנתון קיימת פונקציה חח"ע ועל <math>f:A\to \mathbb{N} </math>.
נגדיר את היחס הבא על <math>A</math> כך: <math>x\leq y \iff f(x)\leq f(y) </math>. זהו יחס סדר (השתכנעו!).
נגדיר את היחס הבא על <math>A</math> כך: <math>x\leq y \iff f(x)\leq f(y) </math>. זהו יחס סדר (השתכנעו!).
בנוסף, <math>A</math> סדורה היטב על ידו. הוכחה: תהא <math>B\subseteq A</math> תת קבוצה לא ריקה. אזי <math>f(B)\subseteq\mathbb{N}</math> תת קבוצה לא ריקה ולכן קיים בה איבר מינימום נסמנו <math>n</math>. בדקו כי  
בנוסף, <math>A</math> סדורה היטב על ידו: תהא <math>B\subseteq A</math> תת קבוצה לא ריקה. אזי <math>f(B)\subseteq\mathbb{N}</math> תת קבוצה לא ריקה ולכן קיים בה איבר מינימום נסמנו <math>n</math>. בדקו כי  
<math>f^{-1}(n)\in B</math> איבר מינימום.
<math>f^{-1}(n)\in B</math> איבר מינימום.



גרסה מ־09:03, 3 ביולי 2015

חזרה למערכי התרגול

רעיון בסיסי - אינדוקציה על הטבעיים

בשביל להוכיח שטענה מסוימת [math]\displaystyle{ P(n) }[/math] נכונה עבור כל מספר טבעי (למשל [math]\displaystyle{ (1+2+\cdots +n)^2 =1^3 +2^3 + \cdots +n^3 }[/math]) מספיק להוכיח את הבאים:

  • (בסיס האינדוקציה) הטענה מתקיימת עבור [math]\displaystyle{ n=1 }[/math] כלומר [math]\displaystyle{ P(1) }[/math] מתקיים
  • (צעד האינדוקציה)אם הטענה נכונה עבור מספר טבעי מסוים אזי היא נכונה גם עבור המספר הבא אחריו. כלומר [math]\displaystyle{ P(n)\Rightarrow P(n+1) }[/math].

למה זה מספיק? בוא נחשוב.. הוכחנו באופן ישיר כי הטענה נכונה עבור [math]\displaystyle{ n=1 }[/math] כלומר [math]\displaystyle{ P(1) }[/math] מתקיים. לכן לפי הטענה השניה, אם הטענה נכונה עבור [math]\displaystyle{ n=1 }[/math] (שזה אכן כך) אז הטענה נכונה גם עבור [math]\displaystyle{ n=2 }[/math]כלומר [math]\displaystyle{ P(2) }[/math]. אה! אז עכשיו זה נכון עבור [math]\displaystyle{ n=2 }[/math] אז לפי אותה טענה זה נכון גם עבור [math]\displaystyle{ n=3 }[/math]! ומה עכשיו? אם זה נכון עבור [math]\displaystyle{ n=3 }[/math] זה נכון עבור [math]\displaystyle{ n=4 }[/math] . וכן על זה הדרך. אפשר להשתכנע שבסופו של דבר [math]\displaystyle{ P(n) }[/math] נכון לכל [math]\displaystyle{ n }[/math]

דוגמא: נוכיח באינדוקציה כי הטענה [math]\displaystyle{ (1+2+\cdots +n)^2 =1^3 +2^3 + \cdots +n^3 }[/math] נכונה לכל [math]\displaystyle{ n\in \mathbb{N} }[/math] טבעי

הוכחה:

עבור [math]\displaystyle{ n=1 }[/math] אכן מתקיים כי [math]\displaystyle{ 1^2=1^3 }[/math]

כעת נראה שאם הטענה נכונה עבור [math]\displaystyle{ n }[/math] כלשהוא, כלומר אם מתקיים [math]\displaystyle{ (1+2+\cdots +n)^2 =1^3 +2^3 + \cdots +n^3 }[/math] אזי הטענה נכונה עבור [math]\displaystyle{ n+1 }[/math], כלומר [math]\displaystyle{ (1+2+\cdots +n+(n+1))^2 =1^3 +2^3 + \cdots +n^3 + (n+1)^3 }[/math]. כלומר נוכיח ש: [math]\displaystyle{ P(n) \to P(n+1) }[/math]

נוכיח:

[math]\displaystyle{ (1+2+\cdots +n+(n+1))^2=(1+2+\cdots +n)^2+2\cdot(1+2+\cdots +n)(n+1)+(n+1)^2 }[/math]

לפי הנחת האינדוקציה אפשר להמשיך הלאה

[math]\displaystyle{ =1^3 +2^3 + \cdots +n^3 +2\cdot (1+2+\cdots +n)(n+1)+(n+1)^2 }[/math] [math]\displaystyle{ =1^3 +2^3 + \cdots +n^3 +2 \cdot \frac{n(n+1)}{2}(n+1)+(n+1)^2 }[/math] [math]\displaystyle{ =1^3 +2^3 + \cdots +n^3 +n(n+1)^2+(n+1)^2 }[/math] [math]\displaystyle{ =1^3 +2^3 + \cdots +n^3 +(1+n)(n+1)^2=1^3 +2^3 + \cdots +n^3+(n+1)^3 }[/math]

וסיימנו


דוגמא נוספת:

הוכח כי לכל מספר טבעי [math]\displaystyle{ n }[/math] מתקיים כי [math]\displaystyle{ 2+4+6+\cdots +2n=n(n+1) }[/math]

פתרון:

עבור [math]\displaystyle{ n=1 }[/math] אכן מתקיים [math]\displaystyle{ 2=1\cdot(1+1) }[/math]

כעת נניח שהטענה נכונה עבור [math]\displaystyle{ n }[/math] ונוכיח את הטענה עבור [math]\displaystyle{ n+1 }[/math]

[math]\displaystyle{ 2+4+\cdots 2n+2(n+1)=\sum_{k=1}^{n+1}2\cdot k=\sum_{k=1}^{n}2\cdot k + 2(n+1) = }[/math]

לפי הנחת האינדוקציה ניתן להמשיך

[math]\displaystyle{ =n(n+1)+2(n+1)=(n+1)(n+2) }[/math]

שזה הטענה עבור [math]\displaystyle{ n+1 }[/math] וסיימנו.

סדר טוב

הגדרה: יהי [math]\displaystyle{ R }[/math] יחס סדר חלקי על קבוצה [math]\displaystyle{ A }[/math].

[math]\displaystyle{ R }[/math] יקרא סדר טוב אם לכל [math]\displaystyle{ \emptyset \neq B\subseteq A }[/math] קיים איבר מינימום/הכי קטן/ראשון ב [math]\displaystyle{ B }[/math].

מינוח: נאמר כי [math]\displaystyle{ A }[/math] סדורה היטב.

דוגמא: כל סדר חלקי על קבוצה סופית הוא סדר טוב, שכן כל תת קבוצה היא בעצמה סופית.

עקרון הסדר הטוב

נסתכל על [math]\displaystyle{ (\mathbb{N},\le) }[/math] - קבוצת הטבעיים עם יחס הסדר "קטן שווה" הסטנדרטי.

אינטואיטיבית, אכן מתקיים כי לכל קבוצה לא ריקה של טבעיים קיים איבר ראשון - "אם 1 שם, הוא הקטן ביותר; אם 2 שם, הוא הקטן ביותר; ממשיכים כך עד שמגיעים לאיבר כלשהו (כי הקבוצה לא ריקה), והוא הקטן ביותר".

פורמלית, טענה זו, הנקראת עקרון הסדר הטוב, והיא שקולה לטענת (/אקסיומת) האינדוקציה.


דוגמא נוספת: ניתן להגדיר אל [math]\displaystyle{ \mathbb{Q}_+ }[/math] יחס סדר חלקי לפי התמונה הבא (כאשר מזהים כל שבר עם זוג סדור ומבטלים את החזרות המיותרות)

NutualSquareEqNutural.jpeg

התבוננו והשתכנעו שזה גם סדר טוב.

הערה: זה בניגוד לסדר "קטן שווה" הרגיל על השברים שאינו סדר טוב כי לקבוצה [math]\displaystyle{ \{x\in \mathbb{Q}_+ | \sqrt{2}\lt x \} }[/math] אין איבר מינימום.


משפט הסדר הטוב

משפט הסדר הטוב קובע שלכל קבוצה [math]\displaystyle{ A }[/math] קיים סדר טוב.


תרגיל:

תהא [math]\displaystyle{ A }[/math] קבוצה בת מנייה. הוכח כי ניתן לסדר אותה היטב (בהינתן עקרון הסדר הטוב).

פתרון:

לפי הנתון קיימת פונקציה חח"ע ועל [math]\displaystyle{ f:A\to \mathbb{N} }[/math]. נגדיר את היחס הבא על [math]\displaystyle{ A }[/math] כך: [math]\displaystyle{ x\leq y \iff f(x)\leq f(y) }[/math]. זהו יחס סדר (השתכנעו!). בנוסף, [math]\displaystyle{ A }[/math] סדורה היטב על ידו: תהא [math]\displaystyle{ B\subseteq A }[/math] תת קבוצה לא ריקה. אזי [math]\displaystyle{ f(B)\subseteq\mathbb{N} }[/math] תת קבוצה לא ריקה ולכן קיים בה איבר מינימום נסמנו [math]\displaystyle{ n }[/math]. בדקו כי [math]\displaystyle{ f^{-1}(n)\in B }[/math] איבר מינימום.

הכללות

הכללה פשוטה 1

הכללה ישירה מתבצעת כך (החלפה רק של הטענה הראשונה): אם נוכיח עבור טענה [math]\displaystyle{ P(n) }[/math] ש:

  • הטענה מתקיימת עבור [math]\displaystyle{ n=k }[/math] מסוים כלומר [math]\displaystyle{ P(k) }[/math] מתקיים
  • אם הטענה נכונה עבור מספר טבעי מסוים אזי היא נכונה גם עבור המספר הבא אחריו. כלומר [math]\displaystyle{ P(n)\Rightarrow P(n+1) }[/math].

אז באופן דומה הטענה נכונה [math]\displaystyle{ P(n) }[/math] נכונה עבור [math]\displaystyle{ n\geq k }[/math]

כלומר - במקום להוכיח עבור [math]\displaystyle{ n=1 }[/math] ואז הטענה מתקיים החל מ-1 ניתן להוכיח עבור [math]\displaystyle{ n=k }[/math] ואז הטענה מתקיים החל מ-k


דוגמא:

הוכח כי לכל [math]\displaystyle{ x\gt 0 }[/math] מתקיים [math]\displaystyle{ (1+x)^n \gt 1+nx }[/math] לכל [math]\displaystyle{ n\geq 2 }[/math]

פתרון:

עבור [math]\displaystyle{ n=2 }[/math] נקבל [math]\displaystyle{ (1+x)^2 = 1+2x+x^2\gt 1+2x }[/math] כי [math]\displaystyle{ x\gt 0 }[/math]

כעת נניח כי הטענה נכונה עבור [math]\displaystyle{ n }[/math] כלשהוא, כלומר מתקיים [math]\displaystyle{ (1+x)^n \gt 1+nx }[/math]

נוכיח עבור [math]\displaystyle{ n+1 }[/math] מהנחת האינדוקציה נקבל כי [math]\displaystyle{ (1+x)^{n+1}=(1+x)^n\cdot (1+x)\gt (1+nx) +1+x \gt 1+x+nx =1+ (n+1)x }[/math]

וסיימנו

הכללה פשוטה 2

אם נוכיח עבור טענה [math]\displaystyle{ P(n) }[/math] ש:

  • הטענה מתקיימת עבור [math]\displaystyle{ n=1 }[/math] מסוים כלומר [math]\displaystyle{ P(1) }[/math] מתקיים
  • אם הטענה נכונה עבור כל המספרים עד מספר טבעי מסוים [math]\displaystyle{ n }[/math] (כלומר מתקיים [math]\displaystyle{ P(m) }[/math] עבור [math]\displaystyle{ m\leq n }[/math]) אזי היא נכונה גם עבור המספר הבא אחריו (כלומר [math]\displaystyle{ P(n+1) }[/math] מתקיים).

אז באופן דומה הטענה נכונה [math]\displaystyle{ P(n) }[/math] נכונה עבור [math]\displaystyle{ n\geq 1 }[/math]

כלומר - אפשר להחליף את ההנחה שמתקיים עבור [math]\displaystyle{ n }[/math] ולהוכיח עבור [math]\displaystyle{ n+1 }[/math] בהנחה שמתקיים עבור כל מי שקטן שווה [math]\displaystyle{ n }[/math] ולהוכיח עבור [math]\displaystyle{ n+1 }[/math]


דוגמא: כל מספר טבעי [math]\displaystyle{ 1\lt n }[/math] ניתן להציגו כמכפלה של מספרים ראשוניים

הוכחה:

עבור [math]\displaystyle{ n=2 }[/math] זה נכון כי 2 ראשוני ואז הוא הפירוק של עצמו.

כעת נניח שהטענה נכונה לכל [math]\displaystyle{ 1\lt k\leq n }[/math] ונוכיח עבור [math]\displaystyle{ n+1 }[/math]

אם [math]\displaystyle{ n+1 }[/math] ראשוני - סיימנו כי אז הוא הפירוק של עצמו.

אחרת [math]\displaystyle{ n+1 }[/math] מתפרק למכפלה [math]\displaystyle{ n+1=ab }[/math] כאשר [math]\displaystyle{ 1\lt a,b\lt n+1 }[/math] לפי הנחת האינדוקציה [math]\displaystyle{ a,b }[/math] מתפרקים למכפלה של מספרים ראשוניים [math]\displaystyle{ a=\Pi_{k=1}^l p_k,b=\Pi_{i=1}^r q_i }[/math] כאשר [math]\displaystyle{ p_k,q)i }[/math] ראשוניים

ואז [math]\displaystyle{ n=ab=\Pi_{k=1}^l p_k\cdot \Pi_{i=1}^r q_i }[/math]

וסיימנו

הכללה מעמיקה

תהא [math]\displaystyle{ A }[/math] קבוצה סדורה היטב (נסמן את היחס שלה ב[math]\displaystyle{ \leq }[/math]) בת מניה אז ניתן להוכיח שטענה [math]\displaystyle{ P }[/math] מתקיימת לכל [math]\displaystyle{ a\in A }[/math] ע"י הוכחת הטענה הבא:

  • אם הטענה [math]\displaystyle{ P }[/math] נכונה עבור [math]\displaystyle{ m\lt n }[/math] אז הטענה נכונה עבור [math]\displaystyle{ n }[/math].


למה זה עובד?

נניח בשלילה כי הטענה [math]\displaystyle{ P }[/math] לא מתקיימת לכל [math]\displaystyle{ a\in A }[/math] אזי נגדיר [math]\displaystyle{ D:=\{a\in A | P(a)=FALSE \} }[/math] - קבוצת כל האיברים ב [math]\displaystyle{ A }[/math] שעבורם הטענה אינה נכונה. מהנחת השלילה [math]\displaystyle{ D\neq \emptyset }[/math].

כיוון ש [math]\displaystyle{ A }[/math] סדורה היטב אזי קיים ב [math]\displaystyle{ D }[/math] מינימום, נסמנו [math]\displaystyle{ d }[/math]. לפי הגדרת מינימום והגדרת [math]\displaystyle{ D }[/math] נובע כי לכל [math]\displaystyle{ m\lt d }[/math] הטענה נכונה (אם היה [math]\displaystyle{ m\lt d }[/math] שהטענה לא נכונה לגביו אזי הוא היה בקבוצה [math]\displaystyle{ D }[/math] ואז זה היה סתירה לכך ש [math]\displaystyle{ d }[/math] מינימום של קבוצה זאת).

אבל אם זה כך אז לפי הטענה שמוכיחים זה גורר כי [math]\displaystyle{ d }[/math] כן מתקיים. סתירה. ולכן הטענה נכונה לכל [math]\displaystyle{ a\in A }[/math]


הערה: אפשר לעשות אינדוקציה הנקראת אינדוקציה טרנספניטית על קבוצות כלשהן (לאו דווקא בנות מניה)

הערה: קיום סדר טוב על הטבעיים שקול לקיומה של אינדוקציה על הטבעיים.

תרגילים יותר מעניינים

תרגיל:

יהיו [math]\displaystyle{ A_1,A_2,\dots A_n }[/math] קבוצות אזי [math]\displaystyle{ A_1 \triangle A_2 \triangle \dots \triangle A_n =\{x| x \; \; \text{in odd number of sets} \} }[/math]

הוכחה:

עבור [math]\displaystyle{ n=2 }[/math] זה נכון כי הפרש סימטרי של 2 קבוצות זה כל ה [math]\displaystyle{ x }[/math] - ים שנמצאים או בראשונה בלבד או בשניה בלבד.

נניח כי הטענה נכונה עבור [math]\displaystyle{ n }[/math] קבוצות. נוכיח עבור [math]\displaystyle{ n+1 }[/math] קבוצות:

[math]\displaystyle{ A_1 \triangle A_2 \triangle \dots \triangle A_n \triangle A_{n+1} = B\cup C }[/math] כאשר [math]\displaystyle{ B=\{x \; | \; x\in (A_1 \triangle A_2 \triangle \dots \triangle A_n )\backslash A_{n+1} \} = \{x \; | \; x\in (A_1 \triangle A_2 \triangle \dots \triangle A_n ) \land x\not\in A_{n+1} \} , \; C= \{ x \; | \; x \in A_{n+1} \backslash (A_1 \triangle A_2 \triangle \dots \triangle A_n ) \} = \{x \; | \; x \in A_{n+1} \land x\not\in (A_1 \triangle A_2 \triangle \dots \triangle A_n )\} }[/math]

לפי הנחת האינדוקציה מתקיים [math]\displaystyle{ A_1 \triangle A_2 \triangle \dots \triangle A_n =\{x| x \; \; \text{in odd number of sets from}\; A_1,A_2\dots A_n \} }[/math] ולכן ניתן להמשיך כך

[math]\displaystyle{ B\cup C = \{x \; | \; x\in (A_1 \triangle A_2 \triangle \dots \triangle A_n ) \; \land \; x\not\in A_{n+1}\} \cup \{x \; | \; x \in A_{n+1} \; \land \; x\not\in (A_1 \triangle A_2 \triangle \dots \triangle A_n )\} = }[/math]

[math]\displaystyle{ \{x \; | \; x\in \; \text{in odd number of sets from}\; A_1,A_2\dots A_n \; \land \; x\not\in A_{n+1} \} \cup \{x \; | \; x \in A_{n+1} \; \land \; x\not\in \text{in odd number of sets from}\; A_1,A_2\dots A_n \} = }[/math]

[math]\displaystyle{ \{x \; | x\not\in A_{n+1} \; \land \; x\in \; \text{in odd number of sets from}\; A_1,A_2\dots A_n \} \cup \{x \; | \; x \in A_{n+1} \; \land \; x \in \text{in even number of sets from}\; A_1,A_2\dots A_n \}= }[/math]

[math]\displaystyle{ \{x \; | \; x\in \; \text{in odd number of sets from}\; A_1,A_2\dots A_n, A_{n+1} \} }[/math]


לכן, הטענה נכונה גם עבור [math]\displaystyle{ n+1 }[/math] וסיימנו


תרגיל:

יהיו [math]\displaystyle{ A_1,A_2\dots A_{m+1} \in \mathbb{F}^{n\times n} }[/math] מטריצות ריבועיות אזי האיבר הכללי של המכפלה של כולם ניתן ע"י הנוסחא [math]\displaystyle{ (A_1A_2\cdots A_{m+1})_{i,j}=\underset{1\leq i_1,i_2,\dots i_m \leq n}{\sum}(A_1)_{i,i_1}(A_2)_{i_1,i_2}\dots (A_{m+1})_{i_m,j} }[/math]

הוכחה (באינדוקציה על מספר המטריצות):

עבור [math]\displaystyle{ m=1 }[/math] זה ההגדרה של כפל בין 2 מטריצות

כעת, נניח שהטענה נכונה עבור [math]\displaystyle{ m }[/math] כל שהוא. נוכיח נכונות עבור [math]\displaystyle{ m+1 }[/math]

[math]\displaystyle{ (A_1A_2\cdots A_{m+1}A_{m+2})_{i,j}=\sum_{i_{m+1}=1}^n (A_1A_2\cdots A_{m+1})_{i,i_{m+1}}(A_{m+2})_{i_{m+1},j} }[/math]

לפי הנחת האינדוקציה נמשיך:

[math]\displaystyle{ =\sum_{i_{m+1}=1}^n \underset{1\leq i_1,i_2,\dots i_m \leq n}{\sum}(A_1)_{i,i_1}(A_2)_{i_1,i_2}\dots (A_{m+1})_{i_m,i_{m+1}}(A_{m+2})_{i_{m+1},j} = }[/math]

[math]\displaystyle{ = \underset{1\leq i_1,i_2,\dots i_m, i_{m+1} \leq n}{\sum}(A_1)_{i,i_1}(A_2)_{i_1,i_2}\dots (A_{m+1})_{i_m,i_{m+1}}(A_{m+2})_{i_{m+1},j} }[/math]

וסיימנו.

אזהרה

אינדוקציה היא כלי חזק אך יש לשים לב כי משתמשים בו נכונה.

דוגמא מפורסמת להוכחת שגויה באינדוקציה היא הדוגמא הבא:

טענה: כל קבוצה של סוסים לא ריקה מכילה סוסים מצבע יחיד.

"הוכחה": נוכיח בעזרת אינדוקציה על מספר האיברים בקבוצת הסוסים.

עבור [math]\displaystyle{ n=1 }[/math] אכן מתקיים כי קבוצה עם סוס אחד מכילה רק סוסים מצבע יחיד

כעת נניח כל קבוצה עם [math]\displaystyle{ n }[/math] סוסים מכילה סוסים רק מצבע יחיד ונוכיח את הטענה לקבוצת סוסים מגודל [math]\displaystyle{ n+1 }[/math]

תהא [math]\displaystyle{ H=\{h_1,h_2,\dots h_n,h_{n+1}\} }[/math] קבוצה עם [math]\displaystyle{ n+1 }[/math] סוסים אזי לפי הנחת האינדוקציה [math]\displaystyle{ H_1 =\{h_1,h_2,\dots h_n\} }[/math] ו [math]\displaystyle{ H_2=\{h_2,\dots h_n,h_{n+1}\} }[/math] הן קבוצות שמכילות סוסים מצבע יחיד (כי אלו קבוצות סוסים מגודל [math]\displaystyle{ n }[/math]) ולכן כל הסוסים ב [math]\displaystyle{ H }[/math] ג"כ בעלי צבע יחיד (כי יש חפיפה בין [math]\displaystyle{ H_1 }[/math] ובין [math]\displaystyle{ H_2 }[/math].


חישבו איפה השגיאה (רמז: במעבר מ [math]\displaystyle{ n=1 }[/math] ל [math]\displaystyle{ n=2 }[/math])