88-112 לינארית 1 תיכוניסטים קיץ תשעא/מערך תרגול/11: הבדלים בין גרסאות בדף

מתוך Math-Wiki
(יצירת דף עם התוכן "חזרה למערכי התרגול ==דטרמיננטות== '''הגדרה'...")
 
שורה 25: שורה 25:
מציאת הדטרמיננטה ע"י מינורים עם '''פיתוח לפי השורה ה<math>i</math>''':
מציאת הדטרמיננטה ע"י מינורים עם '''פיתוח לפי השורה ה<math>i</math>''':


<math>|A|=\sum_{j=1}^n (-1)^{i+j)a_{ij}|M_{ij}|</math>
<math>|A|=\sum_{j=1}^n (-1)^{i+j}a_{ij}|M_{ij}|</math>


מציאת הדטרמיננטה ע"י מינורים עם '''פיתוח לפי העמודה ה<math>j</math>''':
מציאת הדטרמיננטה ע"י מינורים עם '''פיתוח לפי העמודה ה<math>j</math>''':


<math>|A|=\sum_{i=1}^n (-1)^{i+j)a_{ij}|M_{ij}|</math>
<math>|A|=\sum_{i=1}^n (-1)^{i+j}a_{ij}|M_{ij}|</math>


לדוגמא:
לדוגמא:
<math>A=\pmatrix{1&2&3\\ 4&5&6\\ 7&8&9}</math> נפתח לפי השורה הראשונה:
<math>A=\pmatrix{1&2&3\\ 4&5&6\\ 7&8&9}</math> נפתח לפי השורה הראשונה:
<math>|A|=(-1)^{1+1}\cdot 1\cdot \begin{vmatrix}5&6\\ 8&9 \end{vmatrix}+(-1)^{1+2}\cdot 2\cdot \begin{vmatrix} 4&6\\ 7&9 \end{vmatrix}+(-1)^{1+3}\cdot 3 \cdot \begin{vmatrix} 4&5\\ 7&8 \end{vmatrix}=0  </math>
<math>|A|=(-1)^{1+1}\cdot 1\cdot \begin{vmatrix}5&6\\ 8&9 \end{vmatrix}+(-1)^{1+2}\cdot 2\cdot \begin{vmatrix} 4&6\\ 7&9 \end{vmatrix}+(-1)^{1+3}\cdot 3 \cdot \begin{vmatrix} 4&5\\ 7&8 \end{vmatrix}=0  </math>

גרסה מ־06:55, 3 באוגוסט 2016

חזרה למערכי התרגול

דטרמיננטות

הגדרה הדטרמיננטה של מטריצה ריבועית [math]\displaystyle{ A\in F^{n\times n} }[/math] היא סקלר [math]\displaystyle{ det(A)=|A|\in F }[/math] המחושב מסכומים של מכפלות של אברי המטריצה.

חישוב דטרמיננטה של מטריצות קטנות

  • הדטרמיננטה של מטריצה מסדר 1 [math]\displaystyle{ A=(\alpha)\in F^{1\times 1} }[/math] היא הערך היחיד במטריצה [math]\displaystyle{ det(A)=\alpha }[/math].
  • הדטרמיננטה של מטריצה [math]\displaystyle{ A=\pmatrix{a&b\\ c&d} \in F^{2\times 2} }[/math] היא [math]\displaystyle{ det(A)=ad-bc }[/math].

למשל: [math]\displaystyle{ det\pmatrix{1&2\\ 3&4} = 1\cdot 4-2\cdot 3=-2 }[/math].

חישוב לפי נוסחת לפלס (מינורים)

סימון עבור מטריצה [math]\displaystyle{ A\in F^{n\times n} }[/math] נסמן ב [math]\displaystyle{ M_{ij} }[/math] את המטריצה מגודל [math]\displaystyle{ n-1 \times n-1 }[/math] המתקבלת מ[math]\displaystyle{ A }[/math] ע"י מחיקת השורה ה[math]\displaystyle{ i }[/math] והעמודה ה[math]\displaystyle{ j }[/math]. זה נקרא המינור ה[math]\displaystyle{ ij }[/math] של המטריצה.

דוגמא: עבור [math]\displaystyle{ A=\pmatrix{1&2&3\\ 4&5&6\\ 7&8&9} }[/math] למשל [math]\displaystyle{ M_{12}=\pmatrix{4&6\\ 7&9} }[/math] [math]\displaystyle{ M_{23}=\pmatrix{1&2\\ 7&8} }[/math]

אפשר למצוא את הדטרמיננטה בעזרת הדטרמיננטות של המינורים (לפי שורה או לפי עמודה), וכך באינדוקציה למצוא דטורמיננטה של כל מטריצה.

מציאת הדטרמיננטה ע"י מינורים עם פיתוח לפי השורה ה[math]\displaystyle{ i }[/math]:

[math]\displaystyle{ |A|=\sum_{j=1}^n (-1)^{i+j}a_{ij}|M_{ij}| }[/math]

מציאת הדטרמיננטה ע"י מינורים עם פיתוח לפי העמודה ה[math]\displaystyle{ j }[/math]:

[math]\displaystyle{ |A|=\sum_{i=1}^n (-1)^{i+j}a_{ij}|M_{ij}| }[/math]

לדוגמא: [math]\displaystyle{ A=\pmatrix{1&2&3\\ 4&5&6\\ 7&8&9} }[/math] נפתח לפי השורה הראשונה: [math]\displaystyle{ |A|=(-1)^{1+1}\cdot 1\cdot \begin{vmatrix}5&6\\ 8&9 \end{vmatrix}+(-1)^{1+2}\cdot 2\cdot \begin{vmatrix} 4&6\\ 7&9 \end{vmatrix}+(-1)^{1+3}\cdot 3 \cdot \begin{vmatrix} 4&5\\ 7&8 \end{vmatrix}=0 }[/math]