88-112 לינארית 1 תיכוניסטים קיץ תשעא/מערך תרגול/11: הבדלים בין גרסאות בדף
שורה 127: | שורה 127: | ||
'''הערה''' מכיוון ו<math>|A|=|A^t|</math> מותר בחישוב הדטרמיננטה לעשות גם פעולות ''עמודה'' אלמנטריות, השינוי בדטרמיננטה הוא דומה. | '''הערה''' מכיוון ו<math>|A|=|A^t|</math> מותר בחישוב הדטרמיננטה לעשות גם פעולות ''עמודה'' אלמנטריות, השינוי בדטרמיננטה הוא דומה. | ||
===תרגיל=== | |||
נתונה מטריצה ריבועית <math>A\in F^{5\times 5}</math>, משנים את סדר השורות של <math>A</math>באופן הבא: | |||
את השורה הראשונה שמים במקום השנייה | |||
את השורה השנייה שמים במקום החמישית | |||
את השורה החמישית שמים במקום הרביעית | |||
את השורה הרביעית שמים במקום הראשונה | |||
כלומר <math>A=\pmatrix{-R_1-\\ -R_2-\\ -R_3-\\ -R_4-\\ -R_5-} \rightarrow \pmatrix{-R_4-\\ -R_1-\\ -R_3-\\-R_5-\\-R_2-}=B</math> | |||
חשבו את הדטרמיננטה של המטריצה המתקבלת,<math>B</math>, בעזרת <math>|A|</math>. | |||
פתרון: | |||
את המטריצה החדשה אפשר לקבל ע"י רצף החלפות שורה: | |||
<math>R_1\leftrightarrow R_2, R_1\leftrightarrow R_4),R_4\leftrightarrow R_5(</math>. | |||
ולכן <math>|B|=(-1)(-1)(-1)|A|=-|A|</math>. | |||
===תרגיל== | ===תרגיל== |
גרסה מ־05:45, 8 באוגוסט 2016
דטרמיננטות
הגדרה הדטרמיננטה של מטריצה ריבועית [math]\displaystyle{ A\in F^{n\times n} }[/math] היא סקלר [math]\displaystyle{ det(A)=|A|\in F }[/math] המחושב מסכומים של מכפלות של אברי המטריצה.
חישוב דטרמיננטה של מטריצות קטנות
- הדטרמיננטה של מטריצה מסדר 1 [math]\displaystyle{ A=(\alpha)\in F^{1\times 1} }[/math] היא הערך היחיד במטריצה [math]\displaystyle{ det(A)=\alpha }[/math].
- הדטרמיננטה של מטריצה [math]\displaystyle{ A=\pmatrix{a&b\\ c&d} \in F^{2\times 2} }[/math] היא [math]\displaystyle{ det(A)=ad-bc }[/math].
למשל: [math]\displaystyle{ det\pmatrix{1&2\\ 3&4} = 1\cdot 4-2\cdot 3=-2 }[/math].
חישוב לפי נוסחת לפלס (מינורים)
סימון עבור מטריצה [math]\displaystyle{ A\in F^{n\times n} }[/math] נסמן ב [math]\displaystyle{ M_{ij} }[/math] את המטריצה מגודל [math]\displaystyle{ n-1 \times n-1 }[/math] המתקבלת מ[math]\displaystyle{ A }[/math] ע"י מחיקת השורה ה[math]\displaystyle{ i }[/math] והעמודה ה[math]\displaystyle{ j }[/math]. זה נקרא המינור ה[math]\displaystyle{ ij }[/math] של המטריצה.
דוגמא: עבור [math]\displaystyle{ A=\pmatrix{1&2&3\\ 4&5&6\\ 7&8&9} }[/math]למשל [math]\displaystyle{ M_{12}=\pmatrix{4&6\\ 7&9} }[/math] [math]\displaystyle{ M_{23}=\pmatrix{1&2\\ 7&8} }[/math]
אפשר למצוא את הדטרמיננטה בעזרת הדטרמיננטות של המינורים (לפי שורה או לפי עמודה), וכך באינדוקציה למצוא דטורמיננטה של כל מטריצה.
מציאת הדטרמיננטה ע"י מינורים עם פיתוח לפי השורה ה[math]\displaystyle{ i }[/math]:
[math]\displaystyle{ |A|=\sum_{j=1}^n (-1)^{i+j}a_{ij}|M_{ij}| }[/math]
מציאת הדטרמיננטה ע"י מינורים עם פיתוח לפי העמודה ה[math]\displaystyle{ j }[/math]:
[math]\displaystyle{ |A|=\sum_{i=1}^n (-1)^{i+j}a_{ij}|M_{ij}| }[/math]
לדוגמא: [math]\displaystyle{ A=\pmatrix{1&2&3\\ 4&5&6\\ 7&8&9} }[/math]נפתח לפי השורה הראשונה: [math]\displaystyle{ |A|=(-1)^{1+1}\cdot 1\cdot \begin{vmatrix}5&6\\ 8&9 \end{vmatrix}+(-1)^{1+2}\cdot 2\cdot \begin{vmatrix} 4&6\\ 7&9 \end{vmatrix}+(-1)^{1+3}\cdot 3 \cdot \begin{vmatrix} 4&5\\ 7&8 \end{vmatrix}=0 }[/math]
נפתח גם לפי העמודה השנייה: [math]\displaystyle{ |A|=(-1)^{1+2}\cdot 2\cdot \begin{vmatrix}4&6\\ 7&9 \end{vmatrix}+(-1)^{2+2}\cdot 5\cdot \begin{vmatrix} 1&3\\ 7&9 \end{vmatrix}+(-1)^{2+3}\cdot 8 \cdot \begin{vmatrix} 1&3\\ 4&6 \end{vmatrix}=0 }[/math]
תכונות של הדטרמיננטה
1. כפליות [math]\displaystyle{ |AB|=|A||B| }[/math].
2. בפרט [math]\displaystyle{ |A^k|=|A|^k }[/math].
3. [math]\displaystyle{ |A^t|=|A| }[/math].
4. אם המטריצה משולשית אז הדטרמיננטה= מכפלת אברי האלכסון (להדגים?).
5. אם [math]\displaystyle{ A }[/math] הפיכה אז [math]\displaystyle{ |A^{-1}|=|A|^{-1} }[/math].
6. [math]\displaystyle{ A }[/math] הפיכה אם"ם [math]\displaystyle{ |A|\neq 0 }[/math].
למשל המטריצה [math]\displaystyle{ A=\pmatrix{1&2&3\\ 4&5&6\\ 7&8&9} }[/math]איננה הפיכה כי חישבנו שהדטרמיננטה היא אפס.
שימו לב שאין בהכרח קשר בין [math]\displaystyle{ |A+B| }[/math] לבין [math]\displaystyle{ |A|+|B| }[/math]. (דוגמא?)
תרגיל
נתונות מטריצות [math]\displaystyle{ A,B\in F^{n \times n} }[/math] כך ש [math]\displaystyle{ |A|=2, |B|=-1 }[/math]. חשבו את [math]\displaystyle{ |(AB^{-1})^t(BA)^{-2}| }[/math].
פתרון
[math]\displaystyle{ |(AB^{-1})^t(BA)^{-2}|=|(AB^{-1})^t|\cdot |(BA)^{-2}|=|(AB^{-1})|\cdot |(BA)|^{-2}|=|A||B|^{-1}|B|^{-2}|A|^{-2}=-\frac{1}{2} }[/math]
תרגיל
תהי [math]\displaystyle{ B\in F^{3\times 3} }[/math]עם דטרמיננטה [math]\displaystyle{ |B|=-1 }[/math]. מצא את [math]\displaystyle{ |2B| }[/math].
פתרון
[math]\displaystyle{ |2B|=|2I\cdot B|=|\pmatrix{2&0&0\\ 0&2&0\\ 0&0&2}|\cdot |B|=2^3 \cdot (-1) }[/math]
בהכללה: [math]\displaystyle{ |\alpha A|=\alpha^n |A| }[/math].
תרגיל
1. תהי [math]\displaystyle{ A }[/math]מטריצה ממשית והפיכה מסדר [math]\displaystyle{ n }[/math]המקיימת [math]\displaystyle{ A^4+2A=0 }[/math]. חשבו את [math]\displaystyle{ |A| }[/math].
2. נניח [math]\displaystyle{ A }[/math]מקיימת [math]\displaystyle{ A^n+a_{n-1}A^{n-1}+\dots +a_1A+I=0 }[/math], הוכיחו כי היא הפיכה.
3.תהיינה [math]\displaystyle{ A,B }[/math] ריבועיות מסדר [math]\displaystyle{ n }[/math] אי-זוגי מעל שדה ממאפיין שונה מ2. נתון ש[math]\displaystyle{ AB+BA=0 }[/math], הוכיחו כי אחת מהמטריצות איננה הפיכה.
פתרון:
1. נעביר אגפים ונקבל [math]\displaystyle{ A^4=-2A }[/math], נקח דטרמיננטה [math]\displaystyle{ |A|^4 =(-2)^n|A| }[/math] ולכן [math]\displaystyle{ |A|=(-2)^{\frac{n}{3}} }[/math].
2. נעביר אגפים ונסדר [math]\displaystyle{ A \left( A^{n-1}+a_{n-1}A^{n-2}+\dots +a_2A+a_1I \right) =-I }[/math], נקח דטרמיננטה [math]\displaystyle{ |A||something|=|-I|=(-1)^n }[/math]. בפרט, [math]\displaystyle{ |A|\neq 0 }[/math]ולכן [math]\displaystyle{ A }[/math]הפיכה.
3. נעביר אגפים [math]\displaystyle{ AB=-BA }[/math] ונקח דטרמיננטה [math]\displaystyle{ |A||B|=(-1)^n|B||A| }[/math]. נתון ש[math]\displaystyle{ n }[/math] אי-זוגי ולכן [math]\displaystyle{ |A||B|=-|A||B| }[/math]. זה מכריח ש[math]\displaystyle{ |A||B|=0 }[/math] ולכן או ש [math]\displaystyle{ |A|=0 }[/math]ואז [math]\displaystyle{ A }[/math]לא הפיכה, או ש[math]\displaystyle{ |B|=0 }[/math] ואז [math]\displaystyle{ B }[/math]לא הפיכה.
תרגיל
תהי [math]\displaystyle{ A }[/math]מטריצה ממשית אנטי-סימטרית מסדר אי-זוגי. הוכיחו כי היא איננה הפיכה.
פתרון לפי הנתון [math]\displaystyle{ A^t=-A }[/math] ולכן [math]\displaystyle{ |A|=|A^t|=|-A|=(-1)^n|A| }[/math] מה שגורר [math]\displaystyle{ |A|=0 }[/math].
שיטת הדירוג
כזכור, לבצע פעולות שורה על מטריצה זה כמו לכפול במטריצה אלמנטרית מתאימה. מכיוון ודטרמיננטה היא כפלית, והחישוב הדטרמיננטה של מטריצות אלמנטריות הוא פשוט, נקבל את הכללים הבאים:
טענה תהי [math]\displaystyle{ B }[/math]מטריצה המתקבלת ממטריצה [math]\displaystyle{ A }[/math] ע" פעולת שורה, אזי:
1. אם [math]\displaystyle{ B }[/math] התקבלה ע"י כפל של אחת השורות ב[math]\displaystyle{ \alpha }[/math] אזי [math]\displaystyle{ |A|=\frac{1}{\alpha}|B| }[/math].
2. אם [math]\displaystyle{ B }[/math] התקבלה ע"י החלפת שתי שורות אזי [math]\displaystyle{ |A|=-|B| }[/math].
3. אם [math]\displaystyle{ B }[/math] התקבלה ע"י הוספת כפולה של שורה אחת לשורה אחרת אזי [math]\displaystyle{ |A|=|B| }[/math].
אם כן, נוכל לחשב דטרמיננטה ע"י דירוג המטריצה עד לצורה משולשית עליונה (צורה שבה קל מאוד לחשב דטרמיננטה), ולעקוב אחר השינויים בדטרמיננטה.
דוגמא [math]\displaystyle{ \begin{vmatrix}2&6&16\\ -3&-6&18\\ 5&12&35\end{vmatrix}=2\cdot (-3)\begin{vmatrix}1&3&8\\ 1&2&-6\\ 5&12&35 \end{vmatrix}=-6\cdot \begin{vmatrix}1&3&8\\0&-1&-14\\0&-3&-5\end{vmatrix}=-6\cdot \begin{vmatrix}1&3&8\\0&-1&-14\\0&0&37\end{vmatrix}=-6\cdot 1\cdot (-1)\cdot 37=222 }[/math]
דוגמא
חשב את [math]\displaystyle{ |A|=\begin{vmatrix}a&1&1&\dots&1\\1&a&1&\dots &1 \\ 1&1&a&\dots &1\\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1&1&1& \dots & a\end{vmatrix} }[/math]
פתרון ראשית נסכום את כל השורות לשורה הראשונה ונקבל [math]\displaystyle{ |A|== \begin{vmatrix}a+n-1&a+n-1& \dots &a+n-1\\ 1&a&\dots &1\\1&1&\dots &1\\ \vdots &\vdots & \dots & \vdots \\ 1&1& \dots & a \end{vmatrix} }[/math] נחלק את השורה הראשונה ב[math]\displaystyle{ a+n-1 }[/math] ונקבל: [math]\displaystyle{ |A|=(a+n-1)\begin{vmatrix}1&1&\dots &1\\1&a&\dots &1\\1&1&\ddots&1\\ \vdots &\vdots &{}& \vdots\\ 1&1&\dots & a\end{vmatrix} }[/math]
כעת נחסר מכל שורה את השורה הראשונה ונקבל [math]\displaystyle{ |A|=(a+n-1)\begin{vmatrix}1&1&\dots &1\\0&a-1&\dots &0\\0&0&\ddots &0\\0&0&\dots &a-1\end{vmatrix}=(a+n-1)1(a-1)^{n-1} }[/math]
הערה מכיוון ו[math]\displaystyle{ |A|=|A^t| }[/math] מותר בחישוב הדטרמיננטה לעשות גם פעולות עמודה אלמנטריות, השינוי בדטרמיננטה הוא דומה.
תרגיל
נתונה מטריצה ריבועית [math]\displaystyle{ A\in F^{5\times 5} }[/math], משנים את סדר השורות של [math]\displaystyle{ A }[/math]באופן הבא:
את השורה הראשונה שמים במקום השנייה את השורה השנייה שמים במקום החמישית את השורה החמישית שמים במקום הרביעית את השורה הרביעית שמים במקום הראשונה
כלומר [math]\displaystyle{ A=\pmatrix{-R_1-\\ -R_2-\\ -R_3-\\ -R_4-\\ -R_5-} \rightarrow \pmatrix{-R_4-\\ -R_1-\\ -R_3-\\-R_5-\\-R_2-}=B }[/math]
חשבו את הדטרמיננטה של המטריצה המתקבלת,[math]\displaystyle{ B }[/math], בעזרת [math]\displaystyle{ |A| }[/math].
פתרון: את המטריצה החדשה אפשר לקבל ע"י רצף החלפות שורה: [math]\displaystyle{ R_1\leftrightarrow R_2, R_1\leftrightarrow R_4),R_4\leftrightarrow R_5( }[/math].
ולכן [math]\displaystyle{ |B|=(-1)(-1)(-1)|A|=-|A| }[/math].
=תרגיל
נתון ש[math]\displaystyle{ \begin{vmatrix}a&b&a\\d&e&f\\g&h&i\end{vmatrix}=2 }[/math]. חשבו את [math]\displaystyle{ \begin{vmatrix} i-4c&f&2i+f\\g-4a&d&2g+d\\h-4b&e&2h+e \end{vmatrix} }[/math].
פתרון: נשתמש בפעולות שורה ועמודה ונעקוב אחר השינויים בדטרמיננטה:
[math]\displaystyle{ |A|=^{C_3-C_2} \begin{vmatrix}i-4c&f&2i\\g-4a&d&2g\\h-4b&e&2h\end{vmatrix}=^{\frac{1}{2}C_3}2\begin{vmatrix}i-4c&f&i\\g-4a&d&g\\h-4b&e&h\end{vmatrix}=^{C_1-C_2}2\begin{vmatrix}-4c&f&i\\-4a&d&g\\-4b&e&h\end{vmatrix}=^{\frac{1}{-4}C_1}2(-4)\begin{vmatrix}c&f&i\\a&d&g\\b&e&h\end{vmatrix}=\dots =-16 }[/math]
המטריצה הנילוות (המצורפת)
הגדרה תהי [math]\displaystyle{ A\in F^{n\times n} }[/math], המטריצה נילווית שלה היא המטריצה [math]\displaystyle{ adj(A)=\left( (-1)^{i+j}|M_{ji}| \right)_{ij} }[/math].
(שימו לב להחלפה בין [math]\displaystyle{ i }[/math] ו [math]\displaystyle{ j\lt /math !) דוגמא ==המשפט המרכזי== \lt math\gt A(adjA)=(adjA)A=|A|I }[/math]
תוצאה: אם [math]\displaystyle{ A }[/math] הפיכה אז [math]\displaystyle{ A^{-1}=\frac{adjA}{|A|} }[/math].
תרגיל
תהי [math]\displaystyle{ A\in F^{n\times n} }[/math] מטריצה. 1. הוכח כי [math]\displaystyle{ |adjA|=|A|^{n-1} }[/math]. 2. נניח כי המטריצה הפיכה, חשבו את [math]\displaystyle{ adj \left( adjA \right) }[/math].
פתרון
1. ראשית נניח כי [math]\displaystyle{ |A|\neq 0 }[/math], אזי נפעיל דטרמיננטה על שני האגפים: [math]\displaystyle{ |AadjA|=||A|I| }[/math] ונקבל [math]\displaystyle{ |A||adjA|=|A|^n }[/math] נחלק בדטרמיננטה ואז [math]\displaystyle{ |adjA|=|A|^{n-1} }[/math] כדרוש.
כעת נניח [math]\displaystyle{ |A|=0 }[/math] וצריך להוכיח כי [math]\displaystyle{ |adjA|=0 }[/math]. לפי המשפט [math]\displaystyle{ (adjA)A=|A|I=0 }[/math]
אם [math]\displaystyle{ A=0 }[/math] אז ברור ש [math]\displaystyle{ adjA=0 }[/math] לפי ההגדרה. אחרת, יש איזשהי עמודה של [math]\displaystyle{ A }[/math]שהיא לא אפס, [math]\displaystyle{ C_k(A) }[/math]. ואז [math]\displaystyle{ adjA\cdot C_k(A)=0 }[/math] מה שאומר ש[math]\displaystyle{ adjA }[/math] לא הפיכה ואז [math]\displaystyle{ |adjA|=0 }[/math].
2. נשתמש במשפט עבור המטריצה [math]\displaystyle{ B=adjA }[/math], אזי [math]\displaystyle{ (adjA)\cdot (adj(adjA)=|adjA|I }[/math]. ולפי הסעיף הקודם נקבל ש[math]\displaystyle{ adj(adjA)=adjA^{-1}|A|^{n-1} }[/math]. ומכיוון ו[math]\displaystyle{ adjA^{-1}=\frac{A}{|A|} }[/math] אז [math]\displaystyle{ adj(adjA)=A|A|^{n-2} }[/math].
תרגיל
תהי [math]\displaystyle{ A\in \mathbb{R}^{n\times n} }[/math]המקיימת [math]\displaystyle{ (A+I)^2=0 }[/math].
א. הוכיחו כי [math]\displaystyle{ A }[/math]הפיכה.
ב. הביעו את [math]\displaystyle{ adjA }[/math]באמצעות [math]\displaystyle{ A,I,|A| }[/math] בלבד.
פתרון:
א. נפתח ונקבל [math]\displaystyle{ (A+I)^2 =A^2+AI+IA+I^2=A^2+2A+I }[/math] נעביר אגפים ונקבל [math]\displaystyle{ A(-1)(A+2I)=I }[/math] ולכן [math]\displaystyle{ A }[/math]הפיכה.
ב.לפי המשפט [math]\displaystyle{ adjA=\frac{A^-1}{|A|} }[/math] ולכן בעצם נשאר למצוא ביטוי ל[math]\displaystyle{ A^{-1} }[/math]. לפי הסעיף הקודם [math]\displaystyle{ A^{-1}=-A-2I }[/math] ולכן [math]\displaystyle{ adjA=(-A-2I)|A|^{-1} }[/math].
תרגיל
תהי [math]\displaystyle{ A\in \mathbb{Q}^{n\times n} }[/math] ונתון שהיא הפיכה ב[math]\displaystyle{ \mathbb{R}^{n\times n} }[/math] (כלומר שיש מטריצה ממשית [math]\displaystyle{ B }[/math] כך ש [math]\displaystyle{ AB=BA=I }[/math]). הוכיחו כי היא הפיכה ב[math]\displaystyle{ \mathbb{Q}^{n\times n} }[/math].
פתרון: מכיוון שמטריצה הפיכה היא יחידה, לא יתכן שב[math]\displaystyle{ \mathbb{Q}^{n\times n} }[/math] יש מטריצה הופכית אחרת. כך שבעצם יש להראות ש[math]\displaystyle{ A^{-1} }[/math] הממשית היא בעצם עם איברים ב[math]\displaystyle{ \mathbb{Q} }[/math].
לפי המשפט [math]\displaystyle{ A^{-1}=\frac{adjA}{|A|} }[/math]. [math]\displaystyle{ |A|\in \mathbb{Q} }[/math] כי הדטרמיננטה זה סכומים של מכפלות של איברי [math]\displaystyle{ A }[/math] שהם רציונליים. [math]\displaystyle{ adjA\in \mathbb{Q}^{n\times n} }[/math] כי האיברים הם [math]\displaystyle{ (-1)^{i+j}|M_{ji}| }[/math] שהם גם רציונלים (כמו קודם). סה"כ קיבלנו [math]\displaystyle{ A^{-1}\in \mathbb{Q}^{n\times n} }[/math].
דטרמיננטות של העתקות לינאריות
טענה אם [math]\displaystyle{ A }[/math]מטריצה ריבועית ו[math]\displaystyle{ P }[/math]מטריצה הפיכה, אזי [math]\displaystyle{ |A|=|PAP^{-1}| }[/math].
(הוכחה: [math]\displaystyle{ |PAP^{-1}|=|P||A||P|^{-1}=|A||P||P|^{-1}=|A| }[/math]).
ראינו בעבר שאם [math]\displaystyle{ A,B }[/math] הן מטריצות מייצגות של אותה העתקה לינארית [math]\displaystyle{ T \colon V \rightarrow V }[/math]אזי יש מטריצה הפיכה [math]\displaystyle{ P }[/math](למעשה מטריצת מעבר בסיסים) כך ש[math]\displaystyle{ B=PAP^{-1} }[/math]. לאור הטענה הקודמת רואים שלא משנה איך נחשב את המטריצה המייצגת, הדטרמיננטה תישאר אותו דבר. ולכן אפשר להגדיר...
הגדרה הדטרמיננטה של העתקה לינארית [math]\displaystyle{ T\colon V\rightarrow V }[/math]היא הדטרמיננטה של מטריצה מייצגת (כלשהי).
טענה שימושית העתקה [math]\displaystyle{ T\colon V\rightarrow V }[/math]היא הפיכה אם"ם הדטרמיננטה שלה שונה מאפס.
עוד טענה שימושית תהיינה [math]\displaystyle{ T,S \colon V \rightarrow V }[/math] הע"ל. אזי [math]\displaystyle{ |T\circ S=|T||S| }[/math].