שיחה:89-214 תשעז סמסטר א: הבדלים בין גרסאות בדף

מתוך Math-Wiki
(←‏דף תרגילים 2: פסקה חדשה)
שורה 10: שורה 10:


תודה:)
תודה:)
:נכון, כדי להוכיח שקבוצה עם פעולה מסוימת היא חבורה צריך להוכיח שלכל איבר קיים הופכי.
:איבר כלשהו בתת הקבוצה הוא מן הצורה <math>km</math> עבור <math>m \in U_n</math>. מי יכול להיות ההופכי של <math>km</math>, כאשר ידוע לנו ש-<math>k,m \in U_n</math>? למה בכלל <math>k \in U_n</math>? אני מקווה שזה רמז מספיק.

גרסה מ־18:48, 6 בדצמבר 2016

חזרה לדף הקורס


גלול לתחתית העמוד


הוספת שאלה חדשה

הוסף שאלה חדשה (רשום כותרת לשאלה, רשום את תוכן השאלה ולחץ על שמירה למטה מימין לסיום).

-עזרה על עיצוב הטקסט וכתיב מתמטי תוכלו למצוא כאן

אם אתם רוצים לשאול שאלה עליכם ליצור חשבון משתמש באתר.

דף תרגילים 2

היי:)

לגבי שאלה מספר 7 בדף התרגילים 2. הבנתי כי בתת סעיף ב' של שאלה זו תת הקבוצה היא אכן חבורה, אך לא הצלחתי להוכיח כי לכל איבר בתת הקבוצה קיים איבר הופכי. איך ניתן להראות זאת?

תודה:)

נכון, כדי להוכיח שקבוצה עם פעולה מסוימת היא חבורה צריך להוכיח שלכל איבר קיים הופכי.
איבר כלשהו בתת הקבוצה הוא מן הצורה [math]\displaystyle{ km }[/math] עבור [math]\displaystyle{ m \in U_n }[/math]. מי יכול להיות ההופכי של [math]\displaystyle{ km }[/math], כאשר ידוע לנו ש-[math]\displaystyle{ k,m \in U_n }[/math]? למה בכלל [math]\displaystyle{ k \in U_n }[/math]? אני מקווה שזה רמז מספיק.