תרגול 11 תשעז: הבדלים בין גרסאות בדף

מתוך Math-Wiki
שורה 32: שורה 32:


===שאלה ממבחן===
===שאלה ממבחן===
א. תהי A קבוצה לא ריקה ותהי <math>\{R_i\}_{i\in I}</math> משפחה של יחסי שקילות על A. הוכיחו כי החיתוך הכללי  <math>R=\cap_{i\in I}R_i</math> הינו יחס שקילויות על A.
תהי A קבוצה לא ריקה ותהי <math>\{R_i\}_{i\in I}</math> משפחה של יחסי שקילות על A. הוכיחו כי החיתוך הכללי  <math>R=\cap_{i\in I}R_i</math> הינו יחס שקילויות על A.
 
ב. נסמן <math>R_n=\{(x,y)\in\mathbb{Z}\times\mathbb{Z}:n|(x-y)\}</math>. מהם <math>R_1,R_2,R=\cap_{n\in\mathbb{N}}R_n</math>? מהן קבוצות המנה <math>\mathbb{Z}/R,\mathbb{Z}/R_1,\mathbb{Z}/R_2</math>?


====פתרון====
====פתרון====
א. רפלקסיביות: מאחר ו <math>\forall a\in A\forall i\in I : (a,a)\in R_i</math> נובע ש <math>\forall a\in A: (a,a)\in R</math>.
רפלקסיביות: מאחר ו <math>\forall a\in A\forall i\in I : (a,a)\in R_i</math> נובע ש <math>\forall a\in A: (a,a)\in R</math>.
 


סימטריות: נניח <math>(x,y)\in R</math> לכן <math>\forall i\in I:(x,y)\in R_i</math> ולכן נובע מסמטריות היחסים ש <math>\forall i\in I:(y,x)\in R_i</math> ולכן <math>(y,x)\in R</math>.
סימטריות: נניח <math>(x,y)\in R</math> לכן <math>\forall i\in I:(x,y)\in R_i</math> ולכן נובע מסמטריות היחסים ש <math>\forall i\in I:(y,x)\in R_i</math> ולכן <math>(y,x)\in R</math>.


טרנזיטיביות: נניח <math>(x,y),(y,z)\in \mathbb R</math> אזי <math>\forall i\in I:(x,y),(y,z)\in R_i</math>, וכיון שהוא יחס שקילות אז נובע <math>\forall i\in I:(x,z)\in R_i</math>, ולפי הגדרת החיתוך הכללי נקבל <math>(x,z)\in R</math>


טרנזיטיביות: ממש אותו דבר...
===תרגיל===
 
תהא <math>B\subseteq A</math> קבוצה ותת קבוצה. נגדיר יחס <math>~subseteq P(A)\times P(A)</math> ע"י <math>C~D\iff C\cup B=D\cup B</math>. הוכח שזהו יחס שקילות.
 
ב. <math>R_1</math> הינו אוסף כל הזוגות הסדורים מעל השלמים, שכן אחד מחלק כל מספר ולכן כל הפרש.
 
<math>R_2</math> הינו אוסף כל הזוגות בהם שני הצדדים זוגיים או שני הצדדים אי זוגיים, שכן ההפרש בינהם חייב להיות זוגי.
 
R הינו אוסף הזוגות שההפרש בינהם מתחלק בכל המספרים הטבעיים. רק הפרש אפס יכול להתחלק בכל מספר, ולכן R הינו אוסף הזוגות מהצורה (q,q) עבור q מספר שלם. (יחס השיוויון.)
 
 
<math>\mathbb{Z}/R_1</math> הינו אוסף מחלקות השקילות של היחס המכיל את כל הזוגות. יש בו רק מחלקת שקילות אחת המכילה את כל המספרים השלמים.
 
<math>\mathbb{Z}/R_2</math> מכיל שתי קבוצות, קבוצת הזוגיים וקבוצת האי זוגיים שכן בין כל הזוגיים יש את היחס, ובין כל האי זוגיים ולא בין לבין כמובן (הרי זה יחס שקילויות כפי שקל להוכיח).


<math>\mathbb{Z}/R</math> הינו אוסף כל הקבוצות המכילות איבר שלם בודד.
====פיתרון====
רפלקסיביות: כמובן ש- <math></math>

גרסה מ־09:59, 22 בינואר 2017

המשך יחסי שקילות

הגדרה: תהא A קבוצה. חלוקה של A היא חלוקה של A לקבוצות זרות. באופן פורמלי קיימות תת קבוצות [math]\displaystyle{ \{A_i\}_{i\in I} }[/math] כך ש:

  • [math]\displaystyle{ \forall i\in I: A_i \neq \emptyset }[/math]
  • [math]\displaystyle{ \cup _{i\in I} A_i =A }[/math] כלומר האיחוד של כל תתי הקבוצות שווה לקבוצה כולה
  • הקבוצות [math]\displaystyle{ A_i }[/math] הן זרות זו לו = החיתוך בין כל שתי תתי קבוצות הוא ריק ([math]\displaystyle{ \forall i\not= j\in I : A_i\cap A_j = \phi }[/math])

הגדרה:

יהא R יחס שקילות על A אזי

  1. לכל [math]\displaystyle{ x\in A }[/math] מוגדרת מחלקת השקילות של x להיות [math]\displaystyle{ \bar{x}=[x]_R:=\{y\in A | (x,y)\in R\} }[/math]
  2. קבוצת המנה מוגדרת [math]\displaystyle{ A/R := \{ [x]_R | x\in A\} }[/math]


למשל בדוגמא משבוע שעבר על השלמים עם היחס [math]\displaystyle{ x~y\iff 3|x-y }[/math], מחלקת השקילות של 0 היא [math]\displaystyle{ [0]_R=\{ 0 \pm 3 \pm 6 \dots \} }[/math] וקבוצת המנה היא [math]\displaystyle{ \mathbb{Z}/R= \{[0]_R,[1]_R,[2]_R\} }[/math] (כלומר כל השאריות האפשריות בחלוקה ב-3).


משפט: יהא R יחס שקילות על A אזי

  1. לכל [math]\displaystyle{ x,y\in A }[/math] מתקיים [math]\displaystyle{ [x]=[y] }[/math] או [math]\displaystyle{ [x]\cap [y] =\phi }[/math] (כלומר מחלקות השקילות זרות)
  2. [math]\displaystyle{ A=\bigcup_{[x]\in A/R}[x] }[/math] כלומר (איחוד מחלקות השקילות תתן את כל A)

הערה: זה בדיוק אומר שמיחס שקילות ניתן להגיע לחלוקה של A


מסקנה: תהא A קבוצה אזי יש התאמה {[math]\displaystyle{ R }[/math] יחס שקילות על A } [math]\displaystyle{ \leftrightarrow }[/math] {חלוקות של A}

חידוד: מהותו העיקרית של יחס שקילויות הוא לשים לב לשקילות מסוימת בין אברים שונים (כמו שיוויון) ולצמצם את החזרות המיותרות על ידי קיבוץ כל האיברים השקולים לקבוצה אחת.

שאלה ממבחן

תהי A קבוצה לא ריקה ותהי [math]\displaystyle{ \{R_i\}_{i\in I} }[/math] משפחה של יחסי שקילות על A. הוכיחו כי החיתוך הכללי [math]\displaystyle{ R=\cap_{i\in I}R_i }[/math] הינו יחס שקילויות על A.

פתרון

רפלקסיביות: מאחר ו [math]\displaystyle{ \forall a\in A\forall i\in I : (a,a)\in R_i }[/math] נובע ש [math]\displaystyle{ \forall a\in A: (a,a)\in R }[/math].

סימטריות: נניח [math]\displaystyle{ (x,y)\in R }[/math] לכן [math]\displaystyle{ \forall i\in I:(x,y)\in R_i }[/math] ולכן נובע מסמטריות היחסים ש [math]\displaystyle{ \forall i\in I:(y,x)\in R_i }[/math] ולכן [math]\displaystyle{ (y,x)\in R }[/math].

טרנזיטיביות: נניח [math]\displaystyle{ (x,y),(y,z)\in \mathbb R }[/math] אזי [math]\displaystyle{ \forall i\in I:(x,y),(y,z)\in R_i }[/math], וכיון שהוא יחס שקילות אז נובע [math]\displaystyle{ \forall i\in I:(x,z)\in R_i }[/math], ולפי הגדרת החיתוך הכללי נקבל [math]\displaystyle{ (x,z)\in R }[/math]

תרגיל

תהא [math]\displaystyle{ B\subseteq A }[/math] קבוצה ותת קבוצה. נגדיר יחס [math]\displaystyle{ ~subseteq P(A)\times P(A) }[/math] ע"י [math]\displaystyle{ C~D\iff C\cup B=D\cup B }[/math]. הוכח שזהו יחס שקילות.

פיתרון

רפלקסיביות: כמובן ש- [math]\displaystyle{ }[/math]