פתרון אינפי 1, תש"נ: הבדלים בין גרסאות בדף
אין תקציר עריכה |
יהודה שמחה (שיחה | תרומות) אין תקציר עריכה |
||
(23 גרסאות ביניים של 4 משתמשים אינן מוצגות) | |||
שורה 1: | שורה 1: | ||
[[קטגוריה:פתרון מבחנים]][[קטגוריה:אינפי]] | |||
([http://u.cs.biu.ac.il/~sheinee/tests/math/88132/4ef19f65ab044.pdf המבחן] ) | ([http://u.cs.biu.ac.il/~sheinee/tests/math/88132/4ef19f65ab044.pdf המבחן] ) | ||
==שאלה 2== | |||
נגדיר פונקציה <math>h</math> על-ידי <math>\forall x\in[0,2]:h(x)=x\cdot f(x)</math> . <math>h</math> רציפה בקטע הנ"ל כמכפלת 2 פונקציות רציפות. | |||
<math>h(2)=2f(2)=2\cdot1=2</math> ואילו <math>h(0)=0f(0)=0</math> ולכן לפי משפט ערך הביניים <math>\exists x_0\in[0,2]:h(x)=1</math> . | |||
בנקודה זו מתקיים הדרוש - <math>h(x)=x_0\cdot f(x_0)=1\to f(x_0)=\frac1{x_0}</math> . <math>\blacksquare</math> | |||
==שאלה 3== | |||
א) משפט טיילור - תהי <math>f</math> פונקציה מוגדרת וגזירה <math>n+1</math> פעמים בסביבה <math>S</math> של <math>x_0</math> . אז <math>\forall x\in S:f(x)=P_n(x)+R_n(x)</math> , כאשר <math>P_n(x)=\displaystyle\sum_{k=0}^n\frac{f^{(k)}(x_0)}{k!}(x-x_0)^k</math> . | |||
= | ב)תהי <math>f(x)=x^3-4x^2+2x</math> . אנחנו יודעים שפיתוח טיילור של פולינום עבור סדר גדול מדרגתו או שווה לו יהיה שווה לפולינום עצמו, ולכן התרגיל די מיותר, אבל נפתור בכל זאת: | ||
נחשב נגזרות - <math>f'(x)=(x^3-4x^2+2x)'=3x^2-8x+2</math> | |||
<math>f''(x)=(3x^2-8x+2)'=6x-8</math> | |||
<math>f^{(3)}(x)=(6x-8)'=6</math> | |||
<math>f^{(4)}(x)=f^{(5)}(x)=0</math> | |||
<math>\ | <math>\begin{align}P_5(x)&=\sum_{k=0}^5\frac{f^{(k)}(2)}{k!}(x-2)^k=f(2)+f'(2)(x-2)+\frac{f''(2)}{2}(x-2)^2+\frac{f^{(3)}(2)}{6}(x-2)^3+0+0\\&=2^3-4\cdot4+4+(3\cdot4-8\cdot2+2)(x-2)+\frac{(12-8)}{2}(x-2)^2+\frac{6}{6}(x-2)^3\\&=-4-2(x-2)+2(x-2)^2+(x-2)^3\end{align}</math> | ||
ועם קצת פתיחת סוגריים ופישוט נקבל את הפולינום שהתחלנו ממנו. | |||
= | מתקיים <math>R_{n+1}(x)=f(x)-P_n(x)</math> ולכן השארית היא <math>0</math> , כצפוי. | ||
==שאלה 4== | ==שאלה 4== | ||
הפונקציה בכל מחזור <math>\pi</math> תעלה בדיוק ב- <math>\pi</math> , ולכן הפונקציה היא אוסף עותקים עולים ('קופצים') ב- <math>\pi</math> בכל פעם של קטע בודד באורך <math>\pi</math> שלה. (ראו הגרף) | |||
נימוק פורמלי: <math>f(x+\pi)=x+\pi+\sin(2x+2\pi)=x+\sin(2x)+\pi=f(x)+\pi</math> . | |||
גם ברור שהיא רציפה כסכום והרכבת רציפות. | |||
נגזור: <math>f'(x)=1+2\cos(2x)=0\iff \cos(2x)=-\frac12</math> | |||
<math>\iff 2x=\frac{2\pi}{3}+2\pi k\ \or 2x=-\frac{2\pi}{3}+2\pi k\iff x=\frac{\pi}{3}+\pi k\or x=-\frac{\pi}{3}+\pi k\ (k\in\N)</math> | |||
זה סיזיפי, אבל מוצאים אילו מהנקודות הנ"ל הן בתחום, מציבים בנגזרת השניה לבדיקת סוג קיצון וכו'. | |||
גרף באדיבות וולפראם: [[קובץ:x+sin2x.pdf]] | |||
==שאלה 5== | ==שאלה 5== | ||
א) סדרה ממשית <math>\{a_n\}^\infty</math> תקרא סדרת קושי אם("ם): | |||
<math>\forall \epsilon>0\ ,\ \exists N\in\N\ ,\ \forall m,n\in\N :(m>N \wedge n>N \to |a_m-a_n|<\epsilon)</math> | |||
ב) ניקח את הסדרה <math>a_n</math> שהאיבר ה- <math>n</math>-י בה הוא הקירוב העשרוני עד למקום ה- <math>n</math> של <math>\pi</math> (יותר מגניב משורש 2, אבל פחות נכון כי לך תוכיח שהוא לא-רציונאלי). | |||
היא של רציונאליים, היא מתכנסת מעל הממשיים ולכן היא סדרת קושי, אבל <math>\pi</math>, אם להאמין לספרים, אינו רציונאלי. | |||
ג) נשים לב שהטור <math>\sum (a_{n+1} - a_n) = (-1)^n(\frac1{2^n} + \frac1{2^n\cdot n!})</math> | |||
==שאלה 6== | |||
השאלה אמנם לא בחומר, אבל קלה מדי אפילו לבגרות(בהנחה שהבנתי אותה נכון): | |||
המהירות היא <math>v(t)=4-t^2</math> ולכן האינטגרל הוא <math>x(t)=\int (4-t^2) dt=4t-\frac{t^3}{3}+C</math> , ועם תנאי ההתחלה <math>x(0)=0</math> נקבל <math>C=0</math> . | |||
לכן אנו מעוניינים במקסימום הגלובלי של <math>x(t)=4t-\frac{t^3}{3}</math> בתחום <math>[0,3]</math> . | |||
הנגזרת שווה למהירות, והיא מתאפסת בתחום הנ"ל בנקודה <math>t=2</math> . לכן מספיק למצוא את הערך הגדול ביותר בין הערכים שהפונקציה מקבלת בנקודות 2,0,3. | |||
<math>x(2)=8-\frac83=5\frac13\ ,\ x(0)=0\ ,\ x(3)=12-9=3</math> ולכן ההעתק המקסימלי הוא <math>5\frac13</math> . |
גרסה אחרונה מ־00:57, 9 בפברואר 2017
(המבחן )
שאלה 2
נגדיר פונקציה [math]\displaystyle{ h }[/math] על-ידי [math]\displaystyle{ \forall x\in[0,2]:h(x)=x\cdot f(x) }[/math] . [math]\displaystyle{ h }[/math] רציפה בקטע הנ"ל כמכפלת 2 פונקציות רציפות.
[math]\displaystyle{ h(2)=2f(2)=2\cdot1=2 }[/math] ואילו [math]\displaystyle{ h(0)=0f(0)=0 }[/math] ולכן לפי משפט ערך הביניים [math]\displaystyle{ \exists x_0\in[0,2]:h(x)=1 }[/math] .
בנקודה זו מתקיים הדרוש - [math]\displaystyle{ h(x)=x_0\cdot f(x_0)=1\to f(x_0)=\frac1{x_0} }[/math] . [math]\displaystyle{ \blacksquare }[/math]
שאלה 3
א) משפט טיילור - תהי [math]\displaystyle{ f }[/math] פונקציה מוגדרת וגזירה [math]\displaystyle{ n+1 }[/math] פעמים בסביבה [math]\displaystyle{ S }[/math] של [math]\displaystyle{ x_0 }[/math] . אז [math]\displaystyle{ \forall x\in S:f(x)=P_n(x)+R_n(x) }[/math] , כאשר [math]\displaystyle{ P_n(x)=\displaystyle\sum_{k=0}^n\frac{f^{(k)}(x_0)}{k!}(x-x_0)^k }[/math] .
ב)תהי [math]\displaystyle{ f(x)=x^3-4x^2+2x }[/math] . אנחנו יודעים שפיתוח טיילור של פולינום עבור סדר גדול מדרגתו או שווה לו יהיה שווה לפולינום עצמו, ולכן התרגיל די מיותר, אבל נפתור בכל זאת:
נחשב נגזרות - [math]\displaystyle{ f'(x)=(x^3-4x^2+2x)'=3x^2-8x+2 }[/math]
[math]\displaystyle{ f''(x)=(3x^2-8x+2)'=6x-8 }[/math]
[math]\displaystyle{ f^{(3)}(x)=(6x-8)'=6 }[/math]
[math]\displaystyle{ f^{(4)}(x)=f^{(5)}(x)=0 }[/math]
[math]\displaystyle{ \begin{align}P_5(x)&=\sum_{k=0}^5\frac{f^{(k)}(2)}{k!}(x-2)^k=f(2)+f'(2)(x-2)+\frac{f''(2)}{2}(x-2)^2+\frac{f^{(3)}(2)}{6}(x-2)^3+0+0\\&=2^3-4\cdot4+4+(3\cdot4-8\cdot2+2)(x-2)+\frac{(12-8)}{2}(x-2)^2+\frac{6}{6}(x-2)^3\\&=-4-2(x-2)+2(x-2)^2+(x-2)^3\end{align} }[/math]
ועם קצת פתיחת סוגריים ופישוט נקבל את הפולינום שהתחלנו ממנו.
מתקיים [math]\displaystyle{ R_{n+1}(x)=f(x)-P_n(x) }[/math] ולכן השארית היא [math]\displaystyle{ 0 }[/math] , כצפוי.
שאלה 4
הפונקציה בכל מחזור [math]\displaystyle{ \pi }[/math] תעלה בדיוק ב- [math]\displaystyle{ \pi }[/math] , ולכן הפונקציה היא אוסף עותקים עולים ('קופצים') ב- [math]\displaystyle{ \pi }[/math] בכל פעם של קטע בודד באורך [math]\displaystyle{ \pi }[/math] שלה. (ראו הגרף)
נימוק פורמלי: [math]\displaystyle{ f(x+\pi)=x+\pi+\sin(2x+2\pi)=x+\sin(2x)+\pi=f(x)+\pi }[/math] .
גם ברור שהיא רציפה כסכום והרכבת רציפות.
נגזור: [math]\displaystyle{ f'(x)=1+2\cos(2x)=0\iff \cos(2x)=-\frac12 }[/math]
[math]\displaystyle{ \iff 2x=\frac{2\pi}{3}+2\pi k\ \or 2x=-\frac{2\pi}{3}+2\pi k\iff x=\frac{\pi}{3}+\pi k\or x=-\frac{\pi}{3}+\pi k\ (k\in\N) }[/math]
זה סיזיפי, אבל מוצאים אילו מהנקודות הנ"ל הן בתחום, מציבים בנגזרת השניה לבדיקת סוג קיצון וכו'.
גרף באדיבות וולפראם: קובץ:X+sin2x.pdf
שאלה 5
א) סדרה ממשית [math]\displaystyle{ \{a_n\}^\infty }[/math] תקרא סדרת קושי אם("ם): [math]\displaystyle{ \forall \epsilon\gt 0\ ,\ \exists N\in\N\ ,\ \forall m,n\in\N :(m\gt N \wedge n\gt N \to |a_m-a_n|\lt \epsilon) }[/math]
ב) ניקח את הסדרה [math]\displaystyle{ a_n }[/math] שהאיבר ה- [math]\displaystyle{ n }[/math]-י בה הוא הקירוב העשרוני עד למקום ה- [math]\displaystyle{ n }[/math] של [math]\displaystyle{ \pi }[/math] (יותר מגניב משורש 2, אבל פחות נכון כי לך תוכיח שהוא לא-רציונאלי). היא של רציונאליים, היא מתכנסת מעל הממשיים ולכן היא סדרת קושי, אבל [math]\displaystyle{ \pi }[/math], אם להאמין לספרים, אינו רציונאלי.
ג) נשים לב שהטור [math]\displaystyle{ \sum (a_{n+1} - a_n) = (-1)^n(\frac1{2^n} + \frac1{2^n\cdot n!}) }[/math]
שאלה 6
השאלה אמנם לא בחומר, אבל קלה מדי אפילו לבגרות(בהנחה שהבנתי אותה נכון):
המהירות היא [math]\displaystyle{ v(t)=4-t^2 }[/math] ולכן האינטגרל הוא [math]\displaystyle{ x(t)=\int (4-t^2) dt=4t-\frac{t^3}{3}+C }[/math] , ועם תנאי ההתחלה [math]\displaystyle{ x(0)=0 }[/math] נקבל [math]\displaystyle{ C=0 }[/math] .
לכן אנו מעוניינים במקסימום הגלובלי של [math]\displaystyle{ x(t)=4t-\frac{t^3}{3} }[/math] בתחום [math]\displaystyle{ [0,3] }[/math] .
הנגזרת שווה למהירות, והיא מתאפסת בתחום הנ"ל בנקודה [math]\displaystyle{ t=2 }[/math] . לכן מספיק למצוא את הערך הגדול ביותר בין הערכים שהפונקציה מקבלת בנקודות 2,0,3. [math]\displaystyle{ x(2)=8-\frac83=5\frac13\ ,\ x(0)=0\ ,\ x(3)=12-9=3 }[/math] ולכן ההעתק המקסימלי הוא [math]\displaystyle{ 5\frac13 }[/math] .