88-212 תשעז סמסטר ב/פתרון1: הבדלים בין גרסאות בדף

מתוך Math-Wiki
שורה 12: שורה 12:
===סעיף 1ג===
===סעיף 1ג===
===סעיף 1ד===
===סעיף 1ד===
להפך: נפריך עם <math>R=\mathbb{Z}_{6}</math> שהוא חוג (בלי יחידה) ו-<math>S=3\mathbb{Z}_{6}</math>  שהוא תת חוג שלו (בלי יחידה). 3 הפיך ב-S אבל לא ב-R.
נקח <math>R=\mathbb{Q}</math> ואת תת־החוג שלו <math>S=\mathbb{Z}</math>. האיבר <math>2</math> הפיך ב-<math>R</math>, אבל לא ב-<math>S</math>.
 
להפך: נפריך עם <math>R=\mathbb{Z}_{6}</math> שהוא חוג ועם <math>S=3\mathbb{Z}_{6}</math>  שהוא תת חוג בלי יחידה, אבל עדין יש ל-<math>S</math> איבר יחידה. האיבר הזה הוא <math>3</math> והוא הפיך ב-<math>S</math>, אבל לא הפיך ב-<math>R</math>.


==שאלה 2==
==שאלה 2==

גרסה מ־10:25, 26 במרץ 2017

חזרה לדף הקורס

כאן אפשר לשאול ולענות על תרגיל בית 1 בקורס מבוא לחוגים ומודלים בשנת תשע"ז.

פתרונות סרוקים

שאלה 1

סעיף 1א

סעיף 1ב

סעיף 1ג

סעיף 1ד

נקח [math]\displaystyle{ R=\mathbb{Q} }[/math] ואת תת־החוג שלו [math]\displaystyle{ S=\mathbb{Z} }[/math]. האיבר [math]\displaystyle{ 2 }[/math] הפיך ב-[math]\displaystyle{ R }[/math], אבל לא ב-[math]\displaystyle{ S }[/math].

להפך: נפריך עם [math]\displaystyle{ R=\mathbb{Z}_{6} }[/math] שהוא חוג ועם [math]\displaystyle{ S=3\mathbb{Z}_{6} }[/math] שהוא תת חוג בלי יחידה, אבל עדין יש ל-[math]\displaystyle{ S }[/math] איבר יחידה. האיבר הזה הוא [math]\displaystyle{ 3 }[/math] והוא הפיך ב-[math]\displaystyle{ S }[/math], אבל לא הפיך ב-[math]\displaystyle{ R }[/math].

שאלה 2

סעיף 2א

סעיף 2ב

שאלה 3

שאלה 4

שאלה 5

סעיף 5א

סעיף 5ב

סעיף 5ג

סעיף 5ד

סעיף 5ה

שאלה 6

סעיף 6א

סעיף 6ב

סעיף 6ג