תרגול 12 תשעז: הבדלים בין גרסאות בדף

מתוך Math-Wiki
אין תקציר עריכה
שורה 2: שורה 2:


==פונקציות==
==פונקציות==
'''הגדרה:''' יהיו A,B קבוצות וR יחס בינהן. אזי:
'''הגדרה:''' יהיו <math>A,B</math> קבוצות ו-<math>R</math> יחס בינהן. אזי:
*התחום של R הינו <math>dom(R)=\{a\in A|\exists b\in B:(a,b)\in R\}=\{(*,\;),(*,\;)\dots \}</math>
*התחום של R הינו <math>\mathrm{dom}(R)=\{a\in A|\exists b\in B,(a,b)\in R\}=\{(*,\;),(*,\;)\dots \}</math>
*התמונה של R הינה <math>im(R)=\{b\in B|\exists a\in A:(a,b)\in R\}=\{(\;,*),(\; ,*)\dots \}</math>
*התמונה של R הינה <math>\mathrm{im}(R)=\{b\in B|\exists a\in A,(a,b)\in R\}=\{(\;,*),(\; ,*)\dots \}</math>


'''הערה''': ישירות מהגדרה  מתקיים כי <math>dom(R)\subseteq A, Im(R)\subseteq B</math>
'''הערה''': ישירות מהגדרה  מתקיים כי <math>\mathrm{dom}(R)\subseteq A, \mathrm{im}(R)\subseteq B</math>.


'''דוגמא:'''
'''דוגמה:'''
*<math>R=\{(1,a),(2,b),(3,a),(a,1)\}</math> אזי התחום הוא <math>dom(R)=\{a,1,2,3\}</math> והתמונה הינה <math>im(R)=\{1,a,b\}</math>
*<math>R=\{(1,a),(2,b),(3,a),(a,1)\}</math> אזי התחום הוא <math>\mathrm{dom}(R)=\{a,1,2,3\}</math> והתמונה הינה <math>\mathrm{im}(R)=\{1,a,b\}</math>.


'''הגדרה:'''  
'''הגדרה:'''  
*יחס R מ-A ל-B נקרא '''על''' אם <math>\forall b\in B \exists a\in A:(a,b)\in R</math> כלומר <math>im(R)=B</math>
*יחס <math>R</math> מ-<math>A</math> ל-<math>B</math> נקרא '''על''' אם <math>\forall b\in B \exists a\in A:(a,b)\in R</math> כלומר <math>\mathrm{im}(R)=B</math>.
*יחס R מ-A ל-B נקרא '''מלא''' אם <math>\forall a\in A \exists b\in B:(a,b)\in R</math> כלומר <math>dom(R)=A</math>
*יחס <math>R</math> מ-<math>A</math> ל-<math>B</math> נקרא '''מלא''' אם <math>\forall a\in A \exists b\in B:(a,b)\in R</math> כלומר <math>\mathrm{dom}(R)=A</math>
*יחס R נקרא '''חד ערכי''' אם <math>[(x,b)\in R] \and [(x,d) \in R] \rightarrow (d=b)</math> כלומר אין איבר מ A שמתאים ל-2 איברים שונים מ B.
*יחס <math>R</math> נקרא '''חד ערכי''' אם <math>[(x,b)\in R] \and [(x,d) \in R] \rightarrow (d=b)</math> כלומר אין איבר מ-<math>A</math> שמתאים לשני איברים שונים מ-<math>B</math>.




שורה 21: שורה 21:
יחס חד ערכי ומלא נקרא '''פונקציה'''; נסמן במקרה זה <math>(a,b)\in R\leftrightarrow b=R(a)</math>.  
יחס חד ערכי ומלא נקרא '''פונקציה'''; נסמן במקרה זה <math>(a,b)\in R\leftrightarrow b=R(a)</math>.  
ובאופן כללי <math>f:A\to B \;\; , a \mapsto f(a)</math>.  
ובאופן כללי <math>f:A\to B \;\; , a \mapsto f(a)</math>.  
(A נקרא תחום (הגדרה) של הפונקציה. ו B נקרא הטווח של הפונקציה)
(<math>A</math> נקרא תחום (הגדרה) של הפונקציה ו-<math>B</math> נקרא הטווח של הפונקציה.)


פונקציה נקראת '''חד-חד''' ערכי אם בנוסף היחס ההפוך הוא חד ערכי.
פונקציה נקראת '''חד-חד ערכית''' אם בנוסף היחס ההפוך הוא חד ערכי.


כלומר:  
כלומר:  


<math>f</math> חח"ע אמ"מ <math>f(x_1)=f(x_2)\Rightarrow x_1=x_2</math> אמ"מ <math>x_1\neq x_2 \Rightarrow f(x_1)\neq f(x_2)</math>
<math>f</math> חח"ע אמ"מ <math>f(x_1)=f(x_2)\Rightarrow x_1=x_2</math> אמ"מ <math>x_1\neq x_2 \Rightarrow f(x_1)\neq f(x_2)</math>.




'''הגדרה:'''
'''הגדרה:'''


תהא A קבוצה. '''פונקציית הזהות''' היא פונקציה <math>f:A \to A</math> המקיימת <math>\forall a\in A: f(a)=a</math>. נהוג לסמנה: <math>id_A</math> פונקציית הזהות היא חח"ע ועל.
תהא <math>A</math> קבוצה. '''פונקציית הזהות''' היא פונקציה <math>f:A \to A</math> המקיימת <math>\forall a\in A: f(a)=a</math>. נהוג לסמנה <math>\mathrm{id}_A</math>. פונקציית הזהות היא חח"ע ועל.


למשל:  
דוגמאות:
*<math>f:\mathbb{N}\rightarrow\mathbb{Z}</math> כאשר <math>f(p)=p^2</math> ( חח"ע ואינה על)
*<math>f:\mathbb{N}\rightarrow\mathbb{Z}</math> כאשר <math>f(p)=p^2</math> (חח"ע ואינה על).
*<math>f:\mathbb{N}\rightarrow\mathbb{N}</math> כאשר <math>f(x)=x-1</math> ( לא מוגדר כי <math>f(1)=?</math>)
*<math>f:\mathbb{N}\rightarrow\mathbb{N}</math> כאשר <math>f(x)=x-1</math> (לא מוגדרת כי <math>f(1)=?</math>).


===תרגיל===
===תרגיל===
יהיו A ו-B קבוצות סופיות בעלות עוצמה זהה. הוכח שכל פונקציה מ-A ל-B הינה על אם"ם היא חח"ע
יהיו <math>A</math> ו-<math>B</math> קבוצות סופיות בעלות עוצמה זהה. הוכיחו שכל פונקציה מ-<math>A</math> ל-<math>B</math> הינה על אם"ם היא חח"ע.


'''הוכחה:'''
'''הוכחה:'''
נסמן <math>f:A\to B, A=\{a_1,\dots a_n\},B=\{b_1,\dots b_n\} </math> . כאשר כל האיברים ב A שונים זה מזה וכנ"ל ל B
נסמן <math>f:A\to B, A=\{a_1,\dots, a_n\},B=\{b_1,\dots, b_n\} </math> . כאשר כל האיברים ב-<math>A</math> שונים זה מזה וכנ"ל ב-<math>B</math>.


נניח <math>f </math> חח"ע אזי <math>|\{f(a_1),\dots f(a_n)\}|=n</math>  
נניח <math>f</math> חח"ע אזי <math>|\{f(a_1),\dots, f(a_n)\}|=n</math>  
כיוון ש <math>\{f(a_1),\dots f(a_n)\}\subseteq B </math>  ובשניהם יש אותו מספר איברים, מתקיים שיוון ולכן <math>f </math> על.
כיוון ש-<math>\{f(a_1),\dots, f(a_n)\}\subseteq B </math>  ובשניהם יש אותו מספר איברים, מתקיים שיוון ולכן <math>f </math> על.


נניח  <math>f </math> על. נניח בשלילה ש <math>f </math> אינה חח"ע אזי <math>|\{f(a_1),\dots f(a_n)\}|<n</math> (כי יש שני איברים שנשלחים לאותו מקום)
נניח  <math>f </math> על. נניח בשלילה ש-<math>f</math> אינה חח"ע אזי <math>|\{f(a_1),\dots, f(a_n)\}|<n</math> (כי יש שני איברים שנשלחים לאותו מקום) ואז <math>f</math> אינה על, שזו סתירה.  
ואז <math>f </math> אינה על -סתירה.  


הערה: הדבר אינו נכון אם A וB קבוצות אינסופיות. (מצאו דוגמא)
הערה: הדבר אינו נכון אם <math>A</math> ו-<math>B</math> קבוצות אינסופיות. נסו למצוא דוגמה.


===הרכבת פונקציות===
===הרכבת פונקציות===
שורה 56: שורה 55:


'''הגדרה:'''
'''הגדרה:'''
יהיו  <math>f:A\to B, g:B\to C </math> שתי פונקציות אזי '''ההרכבה של <math>g</math> על <math>f</math>''' היא פונקציה  <math>g \circ f:A\to C </math> המוגדרת על ידי הכלל <math>g \circ f(a)=g(f(a)) </math>
יהיו  <math>f:A\to B, g:B\to C </math> שתי פונקציות אזי '''ההרכבה של <math>g</math> על <math>f</math>''' היא פונקציה  <math>g \circ f:A\to C </math> המוגדרת על ידי הכלל <math>g \circ f(a)=g(f(a)) </math>.


הערה: אם מתיחסים לפונקציות כאל יחסים - מקבלים את ההגדרה של הרכבת יחסים.
הערה: אם מתייחסים לפונקציות כאל יחסים - מקבלים את ההגדרה של הרכבת יחסים.


'''משפט:'''
'''משפט:'''
*אם <math>g \circ f</math> חח"ע אזי f חח"ע.
*אם <math>g \circ f</math> חח"ע אזי <math>f</math> חח"ע.
*אם <math>g \circ f</math> על אזי g על.
*אם <math>g \circ f</math> על אזי <math>g</math> על.
*מסקנה: אם <math>g \circ f</math> חח"ע ועל אזי <math>f</math> חח"ע ו-<math>g</math> על.


===פונקציות הפיכות===
===פונקציות הפיכות===

גרסה מ־16:34, 29 בדצמבר 2017

חזרה לדף מערכי התרגול.

פונקציות

הגדרה: יהיו [math]\displaystyle{ A,B }[/math] קבוצות ו-[math]\displaystyle{ R }[/math] יחס בינהן. אזי:

  • התחום של R הינו [math]\displaystyle{ \mathrm{dom}(R)=\{a\in A|\exists b\in B,(a,b)\in R\}=\{(*,\;),(*,\;)\dots \} }[/math]
  • התמונה של R הינה [math]\displaystyle{ \mathrm{im}(R)=\{b\in B|\exists a\in A,(a,b)\in R\}=\{(\;,*),(\; ,*)\dots \} }[/math]

הערה: ישירות מהגדרה מתקיים כי [math]\displaystyle{ \mathrm{dom}(R)\subseteq A, \mathrm{im}(R)\subseteq B }[/math].

דוגמה:

  • [math]\displaystyle{ R=\{(1,a),(2,b),(3,a),(a,1)\} }[/math] אזי התחום הוא [math]\displaystyle{ \mathrm{dom}(R)=\{a,1,2,3\} }[/math] והתמונה הינה [math]\displaystyle{ \mathrm{im}(R)=\{1,a,b\} }[/math].

הגדרה:

  • יחס [math]\displaystyle{ R }[/math] מ-[math]\displaystyle{ A }[/math] ל-[math]\displaystyle{ B }[/math] נקרא על אם [math]\displaystyle{ \forall b\in B \exists a\in A:(a,b)\in R }[/math] כלומר [math]\displaystyle{ \mathrm{im}(R)=B }[/math].
  • יחס [math]\displaystyle{ R }[/math] מ-[math]\displaystyle{ A }[/math] ל-[math]\displaystyle{ B }[/math] נקרא מלא אם [math]\displaystyle{ \forall a\in A \exists b\in B:(a,b)\in R }[/math] כלומר [math]\displaystyle{ \mathrm{dom}(R)=A }[/math]
  • יחס [math]\displaystyle{ R }[/math] נקרא חד ערכי אם [math]\displaystyle{ [(x,b)\in R] \and [(x,d) \in R] \rightarrow (d=b) }[/math] כלומר אין איבר מ-[math]\displaystyle{ A }[/math] שמתאים לשני איברים שונים מ-[math]\displaystyle{ B }[/math].


הגדרה:

יחס חד ערכי ומלא נקרא פונקציה; נסמן במקרה זה [math]\displaystyle{ (a,b)\in R\leftrightarrow b=R(a) }[/math]. ובאופן כללי [math]\displaystyle{ f:A\to B \;\; , a \mapsto f(a) }[/math]. ([math]\displaystyle{ A }[/math] נקרא תחום (הגדרה) של הפונקציה ו-[math]\displaystyle{ B }[/math] נקרא הטווח של הפונקציה.)

פונקציה נקראת חד-חד ערכית אם בנוסף היחס ההפוך הוא חד ערכי.

כלומר:

[math]\displaystyle{ f }[/math] חח"ע אמ"מ [math]\displaystyle{ f(x_1)=f(x_2)\Rightarrow x_1=x_2 }[/math] אמ"מ [math]\displaystyle{ x_1\neq x_2 \Rightarrow f(x_1)\neq f(x_2) }[/math].


הגדרה:

תהא [math]\displaystyle{ A }[/math] קבוצה. פונקציית הזהות היא פונקציה [math]\displaystyle{ f:A \to A }[/math] המקיימת [math]\displaystyle{ \forall a\in A: f(a)=a }[/math]. נהוג לסמנה [math]\displaystyle{ \mathrm{id}_A }[/math]. פונקציית הזהות היא חח"ע ועל.

דוגמאות:

  • [math]\displaystyle{ f:\mathbb{N}\rightarrow\mathbb{Z} }[/math] כאשר [math]\displaystyle{ f(p)=p^2 }[/math] (חח"ע ואינה על).
  • [math]\displaystyle{ f:\mathbb{N}\rightarrow\mathbb{N} }[/math] כאשר [math]\displaystyle{ f(x)=x-1 }[/math] (לא מוגדרת כי [math]\displaystyle{ f(1)=? }[/math]).

תרגיל

יהיו [math]\displaystyle{ A }[/math] ו-[math]\displaystyle{ B }[/math] קבוצות סופיות בעלות עוצמה זהה. הוכיחו שכל פונקציה מ-[math]\displaystyle{ A }[/math] ל-[math]\displaystyle{ B }[/math] הינה על אם"ם היא חח"ע.

הוכחה: נסמן [math]\displaystyle{ f:A\to B, A=\{a_1,\dots, a_n\},B=\{b_1,\dots, b_n\} }[/math] . כאשר כל האיברים ב-[math]\displaystyle{ A }[/math] שונים זה מזה וכנ"ל ב-[math]\displaystyle{ B }[/math].

נניח [math]\displaystyle{ f }[/math] חח"ע אזי [math]\displaystyle{ |\{f(a_1),\dots, f(a_n)\}|=n }[/math] כיוון ש-[math]\displaystyle{ \{f(a_1),\dots, f(a_n)\}\subseteq B }[/math] ובשניהם יש אותו מספר איברים, מתקיים שיוון ולכן [math]\displaystyle{ f }[/math] על.

נניח [math]\displaystyle{ f }[/math] על. נניח בשלילה ש-[math]\displaystyle{ f }[/math] אינה חח"ע אזי [math]\displaystyle{ |\{f(a_1),\dots, f(a_n)\}|\lt n }[/math] (כי יש שני איברים שנשלחים לאותו מקום) ואז [math]\displaystyle{ f }[/math] אינה על, שזו סתירה.

הערה: הדבר אינו נכון אם [math]\displaystyle{ A }[/math] ו-[math]\displaystyle{ B }[/math] קבוצות אינסופיות. נסו למצוא דוגמה.

הרכבת פונקציות

הגדרה: יהיו [math]\displaystyle{ f:A\to B, g:B\to C }[/math] שתי פונקציות אזי ההרכבה של [math]\displaystyle{ g }[/math] על [math]\displaystyle{ f }[/math] היא פונקציה [math]\displaystyle{ g \circ f:A\to C }[/math] המוגדרת על ידי הכלל [math]\displaystyle{ g \circ f(a)=g(f(a)) }[/math].

הערה: אם מתייחסים לפונקציות כאל יחסים - מקבלים את ההגדרה של הרכבת יחסים.

משפט:

  • אם [math]\displaystyle{ g \circ f }[/math] חח"ע אזי [math]\displaystyle{ f }[/math] חח"ע.
  • אם [math]\displaystyle{ g \circ f }[/math] על אזי [math]\displaystyle{ g }[/math] על.
  • מסקנה: אם [math]\displaystyle{ g \circ f }[/math] חח"ע ועל אזי [math]\displaystyle{ f }[/math] חח"ע ו-[math]\displaystyle{ g }[/math] על.

פונקציות הפיכות

הערה: לכל פונקציה [math]\displaystyle{ f }[/math] מתקיים [math]\displaystyle{ f\circ \mathrm{id} =f }[/math] וגם [math]\displaystyle{ \mathrm{id} \circ f =f }[/math].

הגדרה: תהי [math]\displaystyle{ f }[/math] פונקציה [math]\displaystyle{ f:A\rightarrow B }[/math]. פונקציה [math]\displaystyle{ g:B\rightarrow A }[/math] תיקרא הפונקציה ההופכית ל-[math]\displaystyle{ f }[/math] אם [math]\displaystyle{ f\circ g = \mathrm{id}_B }[/math] וגם [math]\displaystyle{ g\circ f = \mathrm{id}_A }[/math]. במקרה זה נסמן את [math]\displaystyle{ g }[/math] על ידי [math]\displaystyle{ f^{-1} }[/math], ונאמר שהפונקציה [math]\displaystyle{ f }[/math] היא הפיכה.

תרגיל (בהרצאה):

הוכיחו כי פונקציה [math]\displaystyle{ f }[/math] הפיכה אם"ם היא חח"ע ועל.

הוכחה:

אם [math]\displaystyle{ f }[/math] הפיכה, אזי [math]\displaystyle{ f\circ f^{-1} = \mathrm{id}_B }[/math] וגם [math]\displaystyle{ f^{-1}\circ f = \mathrm{id}_A }[/math]. מכיוון שפונקציית הזהות הינה חח"ע ועל, נובע ש-[math]\displaystyle{ f }[/math] חח"ע ועל לפי משפט קודם.

אם [math]\displaystyle{ f }[/math] חח"ע ועל, אז נגדיר [math]\displaystyle{ g:B\to A }[/math] ע"י: עבור [math]\displaystyle{ a\in A }[/math] קיים (כי [math]\displaystyle{ f }[/math] על) [math]\displaystyle{ b\in B }[/math] יחיד (כי [math]\displaystyle{ f }[/math] חח"ע) כך ש-[math]\displaystyle{ f(a)=b }[/math] . נגדיר [math]\displaystyle{ g(b):=a }[/math]. תרגיל: בדקו כי [math]\displaystyle{ g }[/math] היא ההופכית של [math]\displaystyle{ f }[/math].