תרגול 14 תשעח: הבדלים בין גרסאות בדף

מתוך Math-Wiki
(יצירת דף עם התוכן "=== תרגיל === הוכיחו כי <math>|P(\mathbb{N})|=|P(\mathbb{N})-\{\emptyset\}|</math> ==== פתרון ==== נגדיר פונקציה <math>f:P(\mathbb...")
 
אין תקציר עריכה
שורה 1: שורה 1:
חזרה ל[[83-116, בדידה 1 להנדסה, מערכי תרגול|דף מערכי התרגול]].
=עוצמות=
'''הגדרה.''' יהיו <math>A,B</math> שתי קבוצות. אזי:
*אם קיימת <math>f:A\to B </math> חח"ע ועל אז אומרים של-<math>A</math> ול-<math>B</math> '''יש אותה עוצמה'''. סימון <math>|A|=|B|</math>.
*אם קיימת <math>f:A\to B </math> חח"ע אז אומרים כי העוצמה של <math>A</math> קטנה או שווה לזו של <math>B</math>. סימון <math>|A|\leq|B|</math>.
* אם <math>|A|\leq|B|</math> וגם <math>|A|\not=|B|</math> אזי אומרים כי העוצמה של <math>A</math> קטנה ממש מהעוצמה של <math>B</math>. סימון <math>|A|<|B|</math>.
הערה: בעזרת אקסיומת הבחירה מוכיחים כי אם קיימת <math>f:A\to B </math> על אזי <math>|B|\leq |A|</math>.
=== תרגיל ===
=== תרגיל ===
הוכיחו כי <math>|P(\mathbb{N})|=|P(\mathbb{N})-\{\emptyset\}|</math>
הוכיחו כי <math>|P(\mathbb{N})|=|P(\mathbb{N})-\{\varnothing\}|</math>.


==== פתרון ====
==== פתרון ====
נגדיר פונקציה <math>f:P(\mathbb{N})\to P(\mathbb{N})-\{\emptyset\} </math> ע"י <math>\{n\}\mapsto \{n+1\},\emptyset \mapsto \{1\}</math> וכל B שאינה נקודון ואינה קבוצה ריקה נשלחת לעצמה.
נגדיר פונקציה <math>f:P(\mathbb{N})\to P(\mathbb{N})-\{\varnothing\} </math> ע"י <math>\{n\}\mapsto \{n+1\},\varnothing \mapsto \{1\}</math> וכל <math>B</math> שאינה נקודון ואינה הקבוצה הריקה נשלח לעצמה.


===תרגיל ===
===תרגיל ===
הוכיחו כי <math>|A\times A| = |A^{\{1,2\}}|</math>
הוכיחו כי <math>|A\times A| = |A^{\{1,2\}}|</math>.


פתרון: הפונקציה  <math>F:A^{\{1,2\}}\to A\times A</math> המוגדרת <math>f\mapsto (f(1),f(2))</math> הפיכה.
פתרון: הפונקציה  <math>F:A^{\{1,2\}}\to A\times A</math> המוגדרת <math>f\mapsto (f(1),f(2))</math> הפיכה.


===משפט (קנטור- שרדר-ברנשטיין)===
===משפט (קנטור-שרדר-ברנשטיין)===


אם <math>|B|\leq|A|</math> וגם <math>|A|\leq|B|</math> אז <math>|B|=|A|</math>
אם <math>|B|\leq|A|</math> וגם <math>|A|\leq|B|</math> אז <math>|B|=|A|</math>.
 
בהמשך נקצר לק.ש.ב.


===תרגיל===
===תרגיל===
הוכיחו: <math>|\mathbb{Q}\cap [0,1]|=\aleph_0</math>
הוכיחו: <math>|\mathbb{Q}\cap [0,1]|=\aleph_0</math>.


====פתרון====
====פתרון====
לפי ק.ש.ב. כי מוכל ברציונאליים ומכיל <math>\aleph_0</math> שברים מהצורה <math>\frac{1}{n}</math>.
לפי ק.ש.ב. כי הקבוצה מוכלת ברציונליים ומכילה <math>\aleph_0</math> שברים מהצורה <math>\frac{1}{n}</math>.
 


===תרגיל===  
===תרגיל===  


הוכח כי עוצמת כל הקבוצות הבאות שווה - כל קטעים מהצורה <math>[a,b],(a,b),[a,b),(a,b]</math> כאשר <math>a<b</math> ממשיים.
הוכיחו כי עוצמת כל הקבוצות הבאות שווה - כל קטעים מהצורה <math>[a,b],(a,b),[a,b),(a,b]</math> כאשר <math>a<b</math> ממשיים.


====פתרון====
====פתרון====
שורה 29: שורה 41:
נראה שכולם שווי עוצמה לקטע <math>(0,1)</math>.
נראה שכולם שווי עוצמה לקטע <math>(0,1)</math>.


ראשית נגדיר <math>f:(0,1)\rightarrow (a,b)</math> ע"י <math>f(x)=a+(b-a)x</math> חח"ע ועל. השאר עם ק.ש.ב.
ראשית נגדיר <math>f:(0,1)\rightarrow (a,b)</math> ע"י <math>f(x)=a+(b-a)x</math> חח"ע ועל. השאר עם ק.ש.ב.
 
ט: הקטע <math>(\frac{-\pi}{2},\frac{\pi}{2})</math>  בעל עוצמה שווה ל <math>\mathbb{R}</math>.


ה: הפונקציה <math>tan:(\frac{-\pi}{2},\frac{\pi}{2})\to \mathbb{R}</math> הפיכה בתחום הזה ולכן חח"ע ועל.
טענה: הקטע <math>(\frac{-\pi}{2},\frac{\pi}{2})</math> בעל עוצמה שווה ל-<math>\mathbb{R}</math>.


הוכחת הטענה: הפונקציה <math>\tan:(\frac{-\pi}{2},\frac{\pi}{2})\to \mathbb{R}</math> הפיכה בתחום הזה ולכן חח"ע ועל.


===תרגיל ===
===תרגיל ===
תהא A קבוצה. הוכח כי <math>|A|\leq |P(A)|</math>
תהא <math>A</math> קבוצה. הוכיחו כי <math>|A|\leq |P(A)|</math>.


פתרון: נגדיר את הפונקציה <math>f:A|\to P(A)</math> ע"י <math>a \mapsto \{a\}</math> היא חח"ע.
פתרון: נגדיר את הפונקציה <math>f:A|\to P(A)</math> ע"י <math>a \mapsto \{a\}</math> והיא חח"ע.


תהא A קבוצה. הוכח כי <math>|A|\neq |P(A)|</math>
תהא <math>A</math> קבוצה. הוכיחו כי <math>|A|\neq |P(A)|</math>.


פתרון: נניח בשלילה כי <math>|A|= |P(A)|</math> אזי קיימת <math>f: A\to P(A)</math> הפיכה, בפרט על. נגדיר <math>X=\{a\in A: a\notin f(a)\}</math>. זוהי תת קבוצה של A ולכן, מכיוון ש f על, קיים <math>x\in A</math> כך ש <math>f(x)=X</math>. האם <math>x\in X</math>? אם לא, לפי הגדרת X נקבל כי <math>x\notin f(x)=x</math> סתירה. אם כן אז <math>x\in X=f(x)</math> אבל לפי הגדרת X מתקיים <math>x\notin f(x)</math> סתירה. משל/
פתרון: נניח בשלילה כי <math>|A|= |P(A)|</math> אזי קיימת <math>f: A\to P(A)</math> הפיכה, בפרט על. נגדיר <math>X=\{a\in A: a\notin f(a)\}</math>. זוהי תת קבוצה של <math>A</math> ולכן, מכיוון ש-<math>f</math> על, קיים <math>x\in A</math> כך ש-<math>f(x)=X</math>. האם <math>x\in X</math>? אם לא, לפי הגדרת <math>X</math> נקבל כי <math>x\notin f(x)=X</math>, סתירה. אם כן אז <math>x\in X=f(x)</math> אבל לפי הגדרת <math>X</math> מתקיים <math>x\notin f(x)</math> סתירה. מש"ל.

גרסה מ־22:39, 20 בינואר 2018

חזרה לדף מערכי התרגול.

עוצמות

הגדרה. יהיו [math]\displaystyle{ A,B }[/math] שתי קבוצות. אזי:

  • אם קיימת [math]\displaystyle{ f:A\to B }[/math] חח"ע ועל אז אומרים של-[math]\displaystyle{ A }[/math] ול-[math]\displaystyle{ B }[/math] יש אותה עוצמה. סימון [math]\displaystyle{ |A|=|B| }[/math].
  • אם קיימת [math]\displaystyle{ f:A\to B }[/math] חח"ע אז אומרים כי העוצמה של [math]\displaystyle{ A }[/math] קטנה או שווה לזו של [math]\displaystyle{ B }[/math]. סימון [math]\displaystyle{ |A|\leq|B| }[/math].
  • אם [math]\displaystyle{ |A|\leq|B| }[/math] וגם [math]\displaystyle{ |A|\not=|B| }[/math] אזי אומרים כי העוצמה של [math]\displaystyle{ A }[/math] קטנה ממש מהעוצמה של [math]\displaystyle{ B }[/math]. סימון [math]\displaystyle{ |A|\lt |B| }[/math].

הערה: בעזרת אקסיומת הבחירה מוכיחים כי אם קיימת [math]\displaystyle{ f:A\to B }[/math] על אזי [math]\displaystyle{ |B|\leq |A| }[/math].

תרגיל

הוכיחו כי [math]\displaystyle{ |P(\mathbb{N})|=|P(\mathbb{N})-\{\varnothing\}| }[/math].

פתרון

נגדיר פונקציה [math]\displaystyle{ f:P(\mathbb{N})\to P(\mathbb{N})-\{\varnothing\} }[/math] ע"י [math]\displaystyle{ \{n\}\mapsto \{n+1\},\varnothing \mapsto \{1\} }[/math] וכל [math]\displaystyle{ B }[/math] שאינה נקודון ואינה הקבוצה הריקה נשלח לעצמה.

תרגיל

הוכיחו כי [math]\displaystyle{ |A\times A| = |A^{\{1,2\}}| }[/math].

פתרון: הפונקציה [math]\displaystyle{ F:A^{\{1,2\}}\to A\times A }[/math] המוגדרת [math]\displaystyle{ f\mapsto (f(1),f(2)) }[/math] הפיכה.

משפט (קנטור-שרדר-ברנשטיין)

אם [math]\displaystyle{ |B|\leq|A| }[/math] וגם [math]\displaystyle{ |A|\leq|B| }[/math] אז [math]\displaystyle{ |B|=|A| }[/math].

בהמשך נקצר לק.ש.ב.

תרגיל

הוכיחו: [math]\displaystyle{ |\mathbb{Q}\cap [0,1]|=\aleph_0 }[/math].

פתרון

לפי ק.ש.ב. כי הקבוצה מוכלת ברציונליים ומכילה [math]\displaystyle{ \aleph_0 }[/math] שברים מהצורה [math]\displaystyle{ \frac{1}{n} }[/math].

תרגיל

הוכיחו כי עוצמת כל הקבוצות הבאות שווה - כל קטעים מהצורה [math]\displaystyle{ [a,b],(a,b),[a,b),(a,b] }[/math] כאשר [math]\displaystyle{ a\lt b }[/math] ממשיים.

פתרון

נראה שכולם שווי עוצמה לקטע [math]\displaystyle{ (0,1) }[/math].

ראשית נגדיר [math]\displaystyle{ f:(0,1)\rightarrow (a,b) }[/math] ע"י [math]\displaystyle{ f(x)=a+(b-a)x }[/math] חח"ע ועל. השאר עם ק.ש.ב.

טענה: הקטע [math]\displaystyle{ (\frac{-\pi}{2},\frac{\pi}{2}) }[/math] בעל עוצמה שווה ל-[math]\displaystyle{ \mathbb{R} }[/math].

הוכחת הטענה: הפונקציה [math]\displaystyle{ \tan:(\frac{-\pi}{2},\frac{\pi}{2})\to \mathbb{R} }[/math] הפיכה בתחום הזה ולכן חח"ע ועל.

תרגיל

תהא [math]\displaystyle{ A }[/math] קבוצה. הוכיחו כי [math]\displaystyle{ |A|\leq |P(A)| }[/math].

פתרון: נגדיר את הפונקציה [math]\displaystyle{ f:A|\to P(A) }[/math] ע"י [math]\displaystyle{ a \mapsto \{a\} }[/math] והיא חח"ע.

תהא [math]\displaystyle{ A }[/math] קבוצה. הוכיחו כי [math]\displaystyle{ |A|\neq |P(A)| }[/math].

פתרון: נניח בשלילה כי [math]\displaystyle{ |A|= |P(A)| }[/math] אזי קיימת [math]\displaystyle{ f: A\to P(A) }[/math] הפיכה, בפרט על. נגדיר [math]\displaystyle{ X=\{a\in A: a\notin f(a)\} }[/math]. זוהי תת קבוצה של [math]\displaystyle{ A }[/math] ולכן, מכיוון ש-[math]\displaystyle{ f }[/math] על, קיים [math]\displaystyle{ x\in A }[/math] כך ש-[math]\displaystyle{ f(x)=X }[/math]. האם [math]\displaystyle{ x\in X }[/math]? אם לא, לפי הגדרת [math]\displaystyle{ X }[/math] נקבל כי [math]\displaystyle{ x\notin f(x)=X }[/math], סתירה. אם כן אז [math]\displaystyle{ x\in X=f(x) }[/math] אבל לפי הגדרת [math]\displaystyle{ X }[/math] מתקיים [math]\displaystyle{ x\notin f(x) }[/math] סתירה. מש"ל.