מד"ר - משוואות דיפרנציאליות רגילות - ארז שיינר: הבדלים בין גרסאות בדף

מתוך Math-Wiki
שורה 159: שורה 159:




*דוגמא - נפתור את המשוואה <math>xdy-\left(x\cdot\sin^2(\frac{y}{x})+y\right)dx=0</math>
*דוגמא - נפתור את המשוואה <math>xdy-\left(x\cdot\cos^2(\frac{y}{x})+y\right)dx=0</math>
**<math>y'=\frac{x\cdot\cos^2(\frac{y}{x})+y}{x}</math>
**<math>y'=\frac{x\cdot\cos^2(\frac{y}{x})+y}{x}</math>
**<math>\varphi(\frac{y}{x})=f(1,\frac{y}{x})=\cos^2(\frac{y}{x})+\frac{y}{x}</math>
**<math>\varphi(\frac{y}{x})=f(1,\frac{y}{x})=\cos^2(\frac{y}{x})+\frac{y}{x}</math>
שורה 166: שורה 166:
**<math>z=\arctan(ln|x|+C)</math>
**<math>z=\arctan(ln|x|+C)</math>
**<math>y=x\cdot \arctan(ln|x|+C)</math>
**<math>y=x\cdot \arctan(ln|x|+C)</math>


===מד"ר לינארית מסדר ראשון===
===מד"ר לינארית מסדר ראשון===

גרסה מ־19:29, 11 במרץ 2018

הרצאה 1 הקדמה ומשוואה פרידה

  • משוואה דיפרנציאלית מכילה את המשתנה, הפונקציה ונגזרותיה.
  • בחקירת פונקציות, במציאת תחומי עלייה וירידה, אנו פותרים את המשוואה [math]\displaystyle{ f'(x)=0 }[/math]. האם זו משוואה דיפרנציאלית?
  • לא, כיוון שבמשוואות דיפרנציאלית אנו מחפשים פונקציה שמקיימת את המשוואה לכל ערך של המשתנה.
  • כאן הפונקציה נתונה, ואנו מחפשים ערך של המשתנה שמקיים את המשוואה.


נפילה חופשית

  • גוף הנופל חופשית נופל בתאוצה שבקירוב היא קבועה [math]\displaystyle{ g=9.82 }[/math].
  • נסמן ב[math]\displaystyle{ y(t) }[/math] את הגובה של הגוף (כאשר הכיוון החיובי הוא לכיוון כדור הארץ)
  • [math]\displaystyle{ v(t)=y'(t) }[/math] היא המהירות
  • [math]\displaystyle{ a(t)=v'(t)=y''(t) }[/math] היא התאוצה.
  • לכן על מנת לדעת את מיקומו של הגוף בכל נקודה בזמן, עלינו לפתור את המשוואה [math]\displaystyle{ a(t)=g }[/math], הרי התאוצה קבועה.


  • [math]\displaystyle{ y''(t)=g }[/math]
  • לכן [math]\displaystyle{ y'(t)=gt+c_1 }[/math]
  • לכן [math]\displaystyle{ y(t)=\frac{g}{2}t^2+c_1t+c_2 }[/math]


  • כיצד נחשב את הקבועים? לפי תנאי ההתחלה.
  • נסמן את הגובה ההתחלתי בתור 0 (נזכור כי הכיוון החיובי הוא לכיוון כדור הארץ). ולכן [math]\displaystyle{ y(0)=0 }[/math] ולכן [math]\displaystyle{ c_2=0 }[/math]
  • נניח כי המהירות ההתחלתית גם היא הייתה 0 ולכן [math]\displaystyle{ y'(0)=0 }[/math] ולכן גם [math]\displaystyle{ c_2=0 }[/math].


ריבית דריבית

  • נניח שסכום הכסף בבנק לאורך זמן מתואר על ידי הפונקציה [math]\displaystyle{ y(t) }[/math].
  • נניח שאנו מרוויחים תשואה של 2 אחוז בשנה, לכן לאחר שנה יתקיים כי [math]\displaystyle{ y(1)=y(0)+0.02\cdot y(0) }[/math].
  • אבל מה היה קורה אילו הבנק היה משלם את הריבית פעם בחצי שנה?
    • בחצי השנה הראשונה נקבל מחצית מהריבית [math]\displaystyle{ y(\frac{1}{2})=y(0)+\frac{1}{2}\cdot 0.02\cdot y(0) }[/math]
    • ובחצי השנה השנייה נקבל מחצית מהריבית, אך סכום הקרן שלנו כבר גדל [math]\displaystyle{ y(1)=y(\frac{1}{2})+\frac{1}{2}\cdot 0.02 \cdot y(\frac{1}{2}) }[/math]
    • סה"כ [math]\displaystyle{ y(1)=(1.01)^2\cdot y(0) }[/math]
  • זה גדול יותר מהריבית השנתית, כיוון שצברנו ריבית על הקרן וגם על הריבית החצי שנתית.
  • האם יש דרך להפוך את התהליך לרציף?
  • כלומר, בהנתן שתי נקודות זמן קרובות אנו מעוניינים לקבל את הריבית היחסית על הזמן שעבר:
    • [math]\displaystyle{ y(t_2)=y(t_1)+(t_2-t_1)\cdot 0.02 \cdot y(t_1) }[/math]
    • נעביר אגף ונחלק [math]\displaystyle{ \frac{y(t_2)-y(t_1)}{t_2-t_2}=0.02\cdot y(t_1) }[/math]
  • אם נשאיף [math]\displaystyle{ t_2\to t_1 }[/math] נקבל כי [math]\displaystyle{ y'(t_1)=0.02\cdot y(t_1) }[/math]
  • כלומר אנו מעוניינים בפונקציה שמקיימת את המשוואה הדיפרנציאלית [math]\displaystyle{ y'=r\cdot y }[/math] כאשר [math]\displaystyle{ r }[/math] היא הריבית השנתית.


המשוואה [math]\displaystyle{ y'=r\cdot y }[/math]

  • בהמשך הקורס נעסוק בשאלה האם למשוואה דיפרנציאלית יש פתרון, וכמה פתרונות יש למשוואה.
  • מידי פעם נחזור ונפתור את המשוואה הזו בכלים שונים.
  • כעת נשים לב כי:
  • [math]\displaystyle{ y'-ry=0 }[/math]
  • [math]\displaystyle{ e^{-rt}(y'-ry)=0 }[/math]
  • [math]\displaystyle{ (e^{-rt}y)'=0 }[/math]
  • כיוון שהנגזרת שווה אפס הפונקציה קבועה [math]\displaystyle{ e^{-rt}y=C }[/math]
  • סה"כ [math]\displaystyle{ y=Ce^{rt} }[/math]


  • על מנת לחשב את הקבוע C עבור המקרה של ריבית דריבית, עלינו לדעת כמה כסף היה בחשבון בזמן t=0.
  • שימו לב שלכל תנאי התחלה קיבלנו פתרון יחיד.


סדר ומעלה

  • משוואה דיפרנציאלית נקראת מסדר n אם הנגזרת הגבוהה ביותר היא מסדר n.
    • המשוואה [math]\displaystyle{ y''=g }[/math] היא משוואה מסדר שני.
    • המשוואה [math]\displaystyle{ y'=ry }[/math] היא משוואה מסדר ראשון.
  • משוואה דיפרנציאלית נקראת ממעלה n אם הנגזרת מהסדר הגבוה ביותר היא ממעלה n.
    • המשוואה [math]\displaystyle{ (y''')^2+(y')^5=y+sin(t) }[/math] היא מסדר 3 ומעלה 2.


משוואות פרידות

  • משוואה דיפרנציאלית נקראת פרידה אם היא מהצורה [math]\displaystyle{ y'=f(y)g(x) }[/math].
  • נהוג גם להחליף [math]\displaystyle{ y'=\frac{dy}{dx} }[/math] ולכן המשוואה תרשם כך [math]\displaystyle{ dy=f(y)g(x)dx }[/math].
  • לבסוף, אם נזהר עם חלוקה באפס, משוואה פרידה באופן כללי יכולה להיות מהצורה [math]\displaystyle{ f(y)g(x)dy +h(y)r(x)dx=0 }[/math], כלומר [math]\displaystyle{ y'=-\frac{h(y)r(x)}{f(y)g(x)} }[/math].


  • משוואות פרידות אנו יכולים לפתור באמצעות אינטגרלים באופן הבא:
  • ראשית נפריד (ומכאן השם) את המשתנים לשני צידי המשוואה:
  • [math]\displaystyle{ f(y)y'=g(x) }[/math]
  • הקדומות של שני הצדדים שוות עד כדי קבוע.
  • [math]\displaystyle{ \int f(y)y'dx=\{t=y(x),dt=y'dx\}=\int f(t)dt }[/math]
  • במקום t נשאר עם המשתנה y ובעצם אנו מחשבים אינטגרלים לשני הצדדים [math]\displaystyle{ f(y)dy=g(x)dx }[/math], כל אחד לפי המשתנה שלו!


  • לדוגמא נפתור את המשוואה [math]\displaystyle{ y'=r\cdot y }[/math] כמשוואה פרידה.
  • ראשית נפריד את המשתנים ונקבל כי [math]\displaystyle{ \frac{1}{y}dy=rdx }[/math].
  • נשים לב כי הנחנו כאן כי [math]\displaystyle{ y=\neq 0 }[/math].
  • כעת [math]\displaystyle{ \int \frac{1}{y}dy=ln|y| }[/math].
  • [math]\displaystyle{ \int rdx=rx }[/math].
  • וביחד [math]\displaystyle{ ln|y|=rx+C }[/math].
  • לכן [math]\displaystyle{ |y|=e^{rx+C}=e^C\cdot e^{rx} }[/math].
  • לכן [math]\displaystyle{ y=\pm e^C\cdot e^{rx} }[/math].
  • כעת, קל לראות מהצבה במשוואה כי y=0 גם פותר את המשוואה.
  • בסה"כ הפתרון הכללי הוא (שוב) [math]\displaystyle{ y=Ce^{rx} }[/math].


  • שימו לב - חלקנו למקרים בהם הפונקציה שונה מאפס או קבועה אפס, אך לא טיפלנו במקרים בהם הפונקציה מידי פעם שווה אפס.
  • בתרגיל זה איננו צריכים, כי מצאנו את הפתרון הכללי בדרך פשוטה יותר למעלה.
  • בהמשך, משפט הקיום והיחידות יעזור לנו להתמודד עם השאלה הזו, אך באופן כללי לא נעסוק הרבה במקרי קצה בקורס זה.


הפיכת משוואה לפרידה

  • נביט במשוואה [math]\displaystyle{ y'=(x+y)^2 }[/math] שאינה משוואה פרידה.
  • נדגים עכשיו טריק שיהפוך את המשוואה לפרידה.
  • נגדיר את הפונקציה [math]\displaystyle{ z=x+y }[/math].
  • מתקיים כי [math]\displaystyle{ z'=1+y' }[/math] וביחד המשוואה המקורית מקבלת את הצורה [math]\displaystyle{ z'-1=z^2 }[/math].
  • זוהי משוואה פרידה [math]\displaystyle{ \frac{1}{1+z^2}dz=dx }[/math].
  • נפעיל אינטגרל על שני הצדדים ונקבל כי [math]\displaystyle{ \arctan(z)=x+C }[/math]
  • ולכן [math]\displaystyle{ z=\tan(x+C) }[/math]
  • ולכן [math]\displaystyle{ x+y=\tan(x+C) }[/math]
  • [math]\displaystyle{ y=\tan(x+C)-x }[/math]


  • שימו לב לדוגמא, כאן לא התייחסנו למקרה הקצה בו [math]\displaystyle{ x+C }[/math] מחוץ לתחום [math]\displaystyle{ (-\frac{\pi}{2},\frac{\pi}{2}) }[/math].
  • שיטה אחת לוודא שהפתרון שלנו אכן נכון היא להציב את התוצאה שקיבלנו ישירות במשוואה.
  • על מנת לדעת אם לא פספסנו פתרונות אחרים, נעזר בהמשך במשפט הקיום והיחידות.
  • אבל כאמור - אנחנו לא נתייחס באופן כזה לכל מקרה קצה בהמשך הקורס.


נפילה חופשית עם מצנח

  • גוף בעל מסה [math]\displaystyle{ m }[/math] נמצא בנפילה חופשית, מצד אחד הוא מושפע מכוח הכבידה שנחשב קבוע [math]\displaystyle{ m\cdot g }[/math] ומצד שני כוח התנגדות האוויר שנניח שהוא פרופורציונלי למהירות הנפילה בריבוע [math]\displaystyle{ b\cdot v^2 }[/math].
  • לפי החוק השני של ניוטון [math]\displaystyle{ m\cdot a = gm -b\cdot v^2 }[/math].
  • כלומר [math]\displaystyle{ v'=g-\frac{b}{m}v^2 }[/math]
  • נבצע הפרדת משתנים [math]\displaystyle{ \frac{1}{g-\frac{b}{m}v^2}dv=dt }[/math]
  • נבצע פירוק לשברים חלקיים:
  • [math]\displaystyle{ \frac{1}{g-\frac{b}{m}v^2}=\frac{1}{(\sqrt{g}-\sqrt{\frac{b}{m}}\cdot v)(\sqrt{g}+\sqrt{\frac{b}{m}}\cdot v)}=\frac{1}{2\sqrt{g}}\left(\frac{1}{\sqrt{g}+\sqrt{\frac{b}{m}}\cdot v}+\frac{1}{\sqrt{g}-\sqrt{\frac{b}{m}}\cdot v}\right) }[/math]
  • ולכן [math]\displaystyle{ \int \frac{1}{g-\frac{b}{m}v^2}dv=\frac{\sqrt{b}}{2\sqrt{g\cdot m}}\ln\left|\frac{\sqrt{g}+\sqrt{\frac{b}{m}}\cdot v}{\sqrt{g}-\sqrt{\frac{b}{m}}\cdot v}\right| }[/math]
  • מצד שני [math]\displaystyle{ \int dt=t+c }[/math]
  • לכן [math]\displaystyle{ \frac{\sqrt{g}+\sqrt{\frac{b}{m}}\cdot v}{\sqrt{g}-\sqrt{\frac{b}{m}}\cdot v}=Ce^{2\sqrt{\frac{g\cdot m}{b}}t} }[/math]
  • נסדר קצת [math]\displaystyle{ v=\sqrt{\frac{g\cdot m}{b}}\cdot \left(1-\frac{2}{Ce^{2\sqrt{\frac{g\cdot m}{b}}t}}\right) }[/math]
  • נשים לב שכאשר [math]\displaystyle{ t\to\infty }[/math] אנו מתכנסים למהירות הסופית [math]\displaystyle{ \sqrt{\frac{g\cdot m}{b}} }[/math].
  • אם זו הייתה המהירות ההתחלתית היינו מקבלים פונקצית מהירות קבועה.

הרצאה 2 מד"ר הומוגנית, מד"ר לינאריות מסדר ראשון ומשוואת ברנולי

מד"ר הומוגנית

  • פונקציה [math]\displaystyle{ f(x,y) }[/math] נקראת הומוגנית מסדר k אם לכל [math]\displaystyle{ \lambda\neq 0 }[/math] מתקיים כי [math]\displaystyle{ f(\lambda x,\lambda y)=\lambda^k f(x,y) }[/math].
  • לדוגמא [math]\displaystyle{ f(x,y)=\frac{x^2+xy}{x+y} }[/math] הומוגנית מסדר 1.


  • טענה: פונקציה [math]\displaystyle{ f(x,y) }[/math] היא מהצורה [math]\displaystyle{ \varphi(\frac{y}{x}) }[/math] לכל [math]\displaystyle{ x\neq 0 }[/math] אם"ם היא הומוגנית מסדר [math]\displaystyle{ 0 }[/math] לכל [math]\displaystyle{ x\neq 0 }[/math].
  • הוכחה:
    • אם [math]\displaystyle{ f(x,y)=\varphi(\frac{y}{x}) }[/math] אזי לכל [math]\displaystyle{ x\neq 0 }[/math] מתקיים [math]\displaystyle{ f(\lambda x,\lambda y)=\varphi(\frac{\lambda y}{\lambda x})=\varphi(\frac{y}{x})=\lambda^0 f(x,y) }[/math].
    • אם [math]\displaystyle{ f(\lambda x,\lambda y)=f(x,y) }[/math], נציב [math]\displaystyle{ \lambda=\frac{1}{x} }[/math] ונקבל כי [math]\displaystyle{ f(x,y)=f(1,\frac{y}{x})=\varphi(\frac{y}{x}) }[/math].


  • מד"ר הומוגנית (בניגוד למד"ר לינארית הומוגנית שנראה בהמשך) היא משוואה מהצורה [math]\displaystyle{ y'=f(x,y) }[/math] כאשר [math]\displaystyle{ f(x,y) }[/math] הומוגנית מסדר [math]\displaystyle{ 0 }[/math].
  • נפתור מד"ר הומוגנית באמצעות ההצבה [math]\displaystyle{ z=\frac{y}{x} }[/math] באופן הבא:
    • ראשית נסמן [math]\displaystyle{ y'=\varphi(\frac{y}{x}) }[/math].
    • כעת נגזור את שני צידי המשוואה [math]\displaystyle{ zx=y }[/math], ונקבל כי [math]\displaystyle{ z'x+z=y' }[/math].
    • לכן לאחר החלפת המשתנה קיבלנו משוואה פרידה [math]\displaystyle{ z'x+z=\varphi(z) }[/math].
    • נפריד את המשתנים [math]\displaystyle{ \frac{1}{\varphi(z)-z}dz=\frac{1}{x}dx }[/math].
    • ולכן [math]\displaystyle{ \int \frac{1}{\varphi(z)-z}dz=\ln|x|+C }[/math].
    • נמצא את [math]\displaystyle{ z }[/math] ונציב בחזרה [math]\displaystyle{ y=zx }[/math].


  • דוגמא - נפתור את המשוואה [math]\displaystyle{ y'=\frac{x^2+y^2}{xy} }[/math]
    • [math]\displaystyle{ \varphi(\frac{y}{x})=f(1,\frac{y}{x})=\frac{1+(\frac{y}{x})^2}{\frac{y}{x}} }[/math]
    • [math]\displaystyle{ \int \frac{1}{\varphi(z)-z}dz=\int \frac{1}{\frac{1+z^2}{z}-z}dz=\int z dz=\frac{z^2}{2} }[/math]
    • [math]\displaystyle{ \frac{z^2}{2}=ln|x|+C }[/math]
    • [math]\displaystyle{ z=\pm\sqrt{ln(x^2)+C} }[/math]
    • ולבסוף [math]\displaystyle{ y=\pm x\sqrt{ln(x^2)+C} }[/math]


  • דוגמא - נפתור את המשוואה [math]\displaystyle{ xdy-\left(x\cdot\cos^2(\frac{y}{x})+y\right)dx=0 }[/math]
    • [math]\displaystyle{ y'=\frac{x\cdot\cos^2(\frac{y}{x})+y}{x} }[/math]
    • [math]\displaystyle{ \varphi(\frac{y}{x})=f(1,\frac{y}{x})=\cos^2(\frac{y}{x})+\frac{y}{x} }[/math]
    • [math]\displaystyle{ \int \frac{1}{\varphi(z)-z}dz=\int \frac{1}{\cos^2(z)}dz=\tan(z) }[/math]
    • [math]\displaystyle{ \tan(z)=\ln|x|+c }[/math]
    • [math]\displaystyle{ z=\arctan(ln|x|+C) }[/math]
    • [math]\displaystyle{ y=x\cdot \arctan(ln|x|+C) }[/math]

מד"ר לינארית מסדר ראשון

  • הגדרה: משוואה מסדר ראשון נקראת לינארית אם היא מהצורה [math]\displaystyle{ y'+p(x)\cdot y=q(x) }[/math].
  • מד"ר לינארית הומוגנית (בניגוד למד"ר הומוגנית שראינו לעיל) היא מהצורה [math]\displaystyle{ y'+p(x)\cdot y=0 }[/math].
  • נחשב נוסחא לפתרון מד"ר לינארית כללית ע"י מציאת פתרון למשוואה לינארית הומוגנית ובאמצעות שיטת וריאצית המקדמים.


  • נשים לב כי המשוואה הלינארית ההומוגנית [math]\displaystyle{ y'+p(x)\cdot y=0 }[/math] היא פרידה.
  • נפריד את המשתנים ונקבל [math]\displaystyle{ \frac{1}{y}dy=-p(x)dx }[/math].
  • נבצע אינטגרציה ונקבל כי [math]\displaystyle{ ln|y|=-\int p(x)dx +C }[/math].
  • ולכן [math]\displaystyle{ y=C\cdot e^{-\int p(x)dx} }[/math]


  • כעת נשתמש בשיטת וריאצית המקדמים על מנת לפתור את המד"ר הלא הומוגנית.
  • נציב במקום המקדם הקבוע [math]\displaystyle{ C }[/math] פונקציה [math]\displaystyle{ C(x) }[/math], וננחש שזה פתרון של המד"ר.
  • כיוון שאנו מנחשים שזה פתרון של המד"ר, נציב אותו בתוך המשוואה ונמצא (בתקווה) פונקציה [math]\displaystyle{ C(x) }[/math] כך שהמשוואה תתקיים.


  • כלומר, נציב [math]\displaystyle{ y=C(x)\cdot e^{-\int p(x)dx} }[/math] במשוואה [math]\displaystyle{ y'+p(x)y=q(x) }[/math].
  • נקבל [math]\displaystyle{ C'(x)\cdot e^{-\int p(x)dx}-p(x)\cdot C(x)\cdot e^{-\int p(x)dx} + p(x)\cdot C(x) \cdot e^{-\int p(x)dx}=q(x) }[/math]
  • משוואה זו מתקיימת אם"ם [math]\displaystyle{ C'(x)\cdot e^{-\int p(x)dx}=q(x) }[/math].
  • כלומר [math]\displaystyle{ C'(x)=q(x)\cdot e^{\int p(x)dx} }[/math].
  • לכן נבחר [math]\displaystyle{ C(x)=\int \left[q(x)\cdot e^{\int p(x)dx}\right]dx+C }[/math]


  • סה"כ הפתרון הכללי למד"ר הלינארית [math]\displaystyle{ y'+p(x)\cdot y=q(x) }[/math] הוא:
[math]\displaystyle{ e^{-\int p(x)dx}\cdot\left(\int\left(q(x)\cdot e^{\int p(x)dx}\right)+C\right) }[/math]


  • דוגמא - המשוואה החביבה עלינו [math]\displaystyle{ y'=ry }[/math]:
    • ראשית, נשים לב כי [math]\displaystyle{ p(x)=-r }[/math] ו[math]\displaystyle{ q(x)=0 }[/math].
    • כלומר זו מד"ר לינארית הומוגנית, והפתרון הכללי הוא [math]\displaystyle{ y=C\cdot e^{-\int (-r)dx}=C\cdot e^{rx} }[/math]


  • דוגמא -

משוואת ברנולי

  • משוואת ברנולי היא משוואה מהצורה [math]\displaystyle{ y'+p(x)\cdot y = q(x)\cdot y^n }[/math] עבור [math]\displaystyle{ n\neq 0,1 }[/math].
  • נפתור את המשוואה על ידי הצבה שתהפוך אותה למשוואה לינארית, אותה כבר למדנו לפתור.
  • נניח כי [math]\displaystyle{ y\neq 0 }[/math], ונחלק ב[math]\displaystyle{ y^n }[/math].
  • נקבל את המשוואה [math]\displaystyle{ \frac{y'}{y^n}+p(x)\cdot y^{1-n}=q(x) }[/math].
  • נציב [math]\displaystyle{ z=y^{1-n} }[/math].
  • נגזור [math]\displaystyle{ z'=(1-n)\frac{y'}{y^n} }[/math].
  • לכן המשוואה היא מהצורה [math]\displaystyle{ \frac{z'}{1-n}+p(x)\cdot z = q(x) }[/math].
  • נפתור עבור [math]\displaystyle{ z }[/math] ונציב חזרה לקבל [math]\displaystyle{ y=z^{\frac{1}{1-n}} }[/math].


  • דוגמא - נפתור את המשוואה [math]\displaystyle{ y'-2xy=2x^3y^2 }[/math].
    • נציב [math]\displaystyle{ z=\frac{1}{y} }[/math].
    • נקבל [math]\displaystyle{ -z'-2xz=2x^3 }[/math] ולכן [math]\displaystyle{ z'+2xz=-2x^3 }[/math].
    • לכן [math]\displaystyle{ z=e^{-x^2}\cdot\left(\int \left(-2x^3e^{x^2}\right)dx+C\right) }[/math]
    • לכן [math]\displaystyle{ z=e^{-x^2}\cdot\left(e^{x^2}(1-x^2)+C\right) }[/math]
    • לכן [math]\displaystyle{ z=1-x^2+Ce^{-x^2} }[/math]
    • ולבסוף [math]\displaystyle{ y=\frac{1}{1-x^2+Ce^{-x^2}} }[/math]


  • דוגמא - גוף בתנועה עם כוח גרר לא לינארי ביחס למהירות
    • נתון גוף הנגרר על הרצפה עם מהירות התחלתית כלשהי. נניח כי החיכוך עם הרצפה פרופורציונלי למהירות, והחיכוך עם האוויר פרופורציונלי למהירות בריבוע.
    • [math]\displaystyle{ F=-bv-dv^2 }[/math] ולכן [math]\displaystyle{ v'=-bv-dv^2 }[/math] (לצורך הפשטות הכנסנו את המסה לתוך הקבועים).
    • זוהי משוואת ברנולי, נציב [math]\displaystyle{ z=\frac{1}{v} }[/math].
    • לכן [math]\displaystyle{ z'-bz=d }[/math]
    • נפתור את המשוואה הדיפרנציאלית:
      • [math]\displaystyle{ z=e^{bt}\cdot (de^{-bt}+C)=d+Ce^{bt} }[/math]
    • ולכן [math]\displaystyle{ v=\frac{1}{d+Ce^{bt}} }[/math]
    • כמובן שכאשר [math]\displaystyle{ t\to\infty }[/math] המהירות מתכנסת מהר מאד לאפס.