אנליזה מתקדמת למורים תרגול 8: הבדלים בין גרסאות בדף

מתוך Math-Wiki
שורה 6: שורה 6:
1. '''דסקרמיננטה חיובית:''' במקרה זה יש שני פתרונות למשוואה האופיינית <math>t_1,t_2</math>, ופיתרון המד"ר הוא: <math>y=c_1e^{t_1x}+c_2e^{t_2x}</math>.
1. '''דסקרמיננטה חיובית:''' במקרה זה יש שני פתרונות למשוואה האופיינית <math>t_1,t_2</math>, ופיתרון המד"ר הוא: <math>y=c_1e^{t_1x}+c_2e^{t_2x}</math>.


2. '''דסקרמיננטה שלילית:''' במקרה זה יש שני פתרונות מרוכבים למשוואה האופיינית <math>z=\alpha+\betai,\overline{z}=\alpha-\beta i</math>, ופתרון המד"ר הוא: <math>y=c_1e^{\alpha x}\cos(\beta x)+c_2e^{\alpha x}\sin(\beta x)</math>.
2. '''דסקרמיננטה שלילית:''' במקרה זה יש שני פתרונות מרוכבים למשוואה האופיינית <math>z=\alpha+\beta i,\overline{z}=\alpha-\beta i</math>, ופתרון המד"ר הוא: <math>y=c_1e^{\alpha x}\cos(\beta x)+c_2e^{\alpha x}\sin(\beta x)</math>.


3. '''דסקרמיננטה = <math>0</math>:''' במקרה זה יש פתרון אחד למשוואה האופיינית <math>t</math>, ופתרון המד"ר הוא <math>y=c_1e^{tx}+c_2xe^{tx}</math>.
3. '''דסקרמיננטה = <math>0</math>:''' במקרה זה יש פתרון אחד למשוואה האופיינית <math>t</math>, ופתרון המד"ר הוא <math>y=c_1e^{tx}+c_2xe^{tx}</math>.

גרסה מ־06:25, 8 בינואר 2019

חזרה ל מערכי תרגול.

הומוגנית עם מקדמים קבועים

המד"ר היא מהצורה [math]\displaystyle{ y''+by'+cy=0 }[/math], ויש לה משוואה אופיינית: [math]\displaystyle{ t^2+bt+c=0 }[/math]. פותרים משוואה זו, ואז יש 3 אפשרויות:

1. דסקרמיננטה חיובית: במקרה זה יש שני פתרונות למשוואה האופיינית [math]\displaystyle{ t_1,t_2 }[/math], ופיתרון המד"ר הוא: [math]\displaystyle{ y=c_1e^{t_1x}+c_2e^{t_2x} }[/math].

2. דסקרמיננטה שלילית: במקרה זה יש שני פתרונות מרוכבים למשוואה האופיינית [math]\displaystyle{ z=\alpha+\beta i,\overline{z}=\alpha-\beta i }[/math], ופתרון המד"ר הוא: [math]\displaystyle{ y=c_1e^{\alpha x}\cos(\beta x)+c_2e^{\alpha x}\sin(\beta x) }[/math].

3. דסקרמיננטה = [math]\displaystyle{ 0 }[/math]: במקרה זה יש פתרון אחד למשוואה האופיינית [math]\displaystyle{ t }[/math], ופתרון המד"ר הוא [math]\displaystyle{ y=c_1e^{tx}+c_2xe^{tx} }[/math].

תרגילים

נפתור את המד"ר הבאות:

1. [math]\displaystyle{ y''-3y'-4y=0 }[/math]

2. [math]\displaystyle{ y''+2y'+4y=0 }[/math]

3. [math]\displaystyle{ y''-6y'+4y=0 }[/math]

4. [math]\displaystyle{ y''-6y'+9=0 }[/math]

פתרון

1. המשוואה האופיינית היא [math]\displaystyle{ t^2-3t-4=0 }[/math] שזה בעצם [math]\displaystyle{ (t-4)(t+1)=0 }[/math], ונקבל [math]\displaystyle{ t_1=4,t_2=-1 }[/math] ולכן פתרון המד"ר הוא: [math]\displaystyle{ y=c_1e^{4x}+c_2e^{-x} }[/math].

2. המשוואה האופיינית היא [math]\displaystyle{ t^2+2t+4=0 }[/math], נוסחת השורשים: [math]\displaystyle{ t_{1,2}=\frac{-2\pm \sqrt{4-4\cdot 4}}{2}=\frac{-2\pm 2\sqrt{3}i}{2}=-1\pm \sqrt{3}i }[/math]. ונקבל שהפתרון הוא: [math]\displaystyle{ y=c_1e^{-x}\cos \sqrt{3}x+c_2e^{-x}\sin \sqrt{3}x }[/math].

3. המשוואה האופיינית היא [math]\displaystyle{ t^2-6t+4=0 }[/math]. נוסחת השורשים: [math]\displaystyle{ t_{1,2}=\frac{6\pm \sqrt{36-4\cdot 4}}{2} }[/math] וכו'.

4. המשוואה האופיינית היא [math]\displaystyle{ (t-3)^2=0 }[/math], ולכן הפתרון הוא: [math]\displaystyle{ y=c_1e^{3x}+c_2xe^{3x} }[/math].

לא הומוגנית עם מקדמים קבועים

מד"ר מהצורה [math]\displaystyle{ y''+ay'+by=f(x) }[/math] פותרים בצורה הבאה: ראשית פותרים את המד"ר כהומוגנית. שנית, מנחשים פתרון פרטי כפי שנלמד במקרים מסויימים, ואז הסכום שלהם הוא פתרון כללי למד"ר. להלן המקרים המסויימים:

מקרה הפולינום

אם [math]\displaystyle{ f(x) }[/math] פולינום. ננחש שהפתרון הוא פולינום ריבועי, ואז נפתור שלוש משוואות בשלוש נעלמים.