חוג ריבועי: הבדלים בין גרסאות בדף
(יצירת דף עם התוכן "'''חוג ריבועי''' הוא חוג שבו כל איבר מקיים משוואה ממעלה שניה מעל השלמים. עבור שלם D חופשי מ...") |
אין תקציר עריכה |
||
שורה 1: | שורה 1: | ||
'''חוג ריבועי''' הוא חוג שבו כל איבר מקיים משוואה ממעלה שניה מעל השלמים. | '''חוג ריבועי''' הוא חוג שבו כל איבר מקיים משוואה ממעלה שניה מעל השלמים. | ||
עבור שלם D [[חופשי מריבועים]] (כלומר שאין לו מחלק ריבועי), נסמן <math>\ {\mathcal{O}}_D = \begin{cases}\mathbb{Z}[\sqrt{D}] & D \equiv | עבור שלם D [[חופשי מריבועים]] (כלומר שאין לו מחלק ריבועי), נסמן <math>\ {\mathcal{O}}_D = \begin{cases}\mathbb{Z}[\sqrt{D}] & D \equiv 2,3 \pmod{4} \\ | ||
\mathbb{Z}[\frac{1+\sqrt{D}}{2}] & D \equiv | \mathbb{Z}[\frac{1+\sqrt{D}}{2}] & D \equiv 1 \pmod{4} \end{cases}</math>. החוג <math>\ \mathcal{O}_D</math> הוא "הסגור השלם" של חוג השלמים בשדה <math>\ \mathbb{Q}[\sqrt{D}]</math>. כל תחום שלמות ריבועי הוא תת-חוג של חוג מהצורה הזו. |
גרסה מ־07:52, 4 ביולי 2019
חוג ריבועי הוא חוג שבו כל איבר מקיים משוואה ממעלה שניה מעל השלמים.
עבור שלם D חופשי מריבועים (כלומר שאין לו מחלק ריבועי), נסמן [math]\displaystyle{ \ {\mathcal{O}}_D = \begin{cases}\mathbb{Z}[\sqrt{D}] & D \equiv 2,3 \pmod{4} \\ \mathbb{Z}[\frac{1+\sqrt{D}}{2}] & D \equiv 1 \pmod{4} \end{cases} }[/math]. החוג [math]\displaystyle{ \ \mathcal{O}_D }[/math] הוא "הסגור השלם" של חוג השלמים בשדה [math]\displaystyle{ \ \mathbb{Q}[\sqrt{D}] }[/math]. כל תחום שלמות ריבועי הוא תת-חוג של חוג מהצורה הזו.