חדוא 2 - ארז שיינר: הבדלים בין גרסאות בדף
שורה 38: | שורה 38: | ||
**אזי <math>I_{n+1}=\frac{t}{2n(1+t^2)^n} + \left(1-\frac{1}{2n}\right)I_n</math> | **אזי <math>I_{n+1}=\frac{t}{2n(1+t^2)^n} + \left(1-\frac{1}{2n}\right)I_n</math> | ||
כאשר תנאי ההתחלה הוא <math>I_1=\arctan(t)</math> | כאשר תנאי ההתחלה הוא <math>I_1=\arctan(t)</math> | ||
<videoflash>cexA1w14A-I</videoflash> | |||
==פרק 2 - האינטגרל המסויים== | ==פרק 2 - האינטגרל המסויים== |
גרסה מ־11:13, 18 במרץ 2020
תקציר ההרצאות
פרק 1 - האינטגרל הלא מסויים
- הגדרה: F נקראת פונקציה קדומה של f בקטע A אם לכל נקודה בקטע מתקיים כי
- האינטגרל הלא מסויים
מסמן פונקציה קדומה של f.
- תהי F קדומה של f, אזי קבוצת כל הקדומות של f שווה ל
- אינטגרלים מיידיים ידועים לנו מנוסחאות הגזירה.
שיטות למציאת קדומה
- תהיינה f,g פונקציות בעלות קדומות, אזי:
אינטגרציה בחלקים
שיטת הההצבה
פונקציה רציונאלית
- הורדת דרגת המונה ע"י חילוק פולינומים
- פירוק לשברים חלקיים
- חישוב אינטגרל של כל שבר חלקי
- נסמן
- אזי
- נסמן
כאשר תנאי ההתחלה הוא