חדוא 1 - ארז שיינר: הבדלים בין גרסאות בדף
(←חסמים) |
|||
שורה 59: | שורה 59: | ||
==פרק 2 - סדרות== | ==פרק 2 - סדרות== | ||
*הגדרת הגבול של סדרה: | |||
*תהי סדרה ממשית <math>a_n</math> ויהי מספר ממשי <math>L\in\mathbb{R}</math>. | |||
*<math>L</math> הינו גבול הסדרה <math>a_n</math> (מסומן <math>\lim a_n=L</math> או <math>a_n\to L</math>) אם: | |||
**לכל סביבה של הגבול, קיים מקום בסדרה שאחריו כל איברי הסדרה נמצאים בסביבה הנתונה, כלומר: | |||
**לכל מרחק <math>\varepsilon>0</math> קיים מקום <math>N\in\mathbb{N}</math> כך שאחריו לכל <math>n>N</math> מתקיים כי <math>|a_n-L|<\varepsilon</math> | |||
<videoflash>mMVBYUDmSA0</videoflash> | <videoflash>mMVBYUDmSA0</videoflash> | ||
*נגדיר ש<math>a_n\to\infty</math> אם לכל <math>M>0</math> קיים <math>N\in\mathbb{N}</math> כך שלכל <math>n>N</math> מתקיים כי <math>a_n>M</math> | |||
*נגדיר ש<math>a_n\to -\infty</math> אם <math>-a_n\to\infty</math> | |||
*טענה: תהי <math>a_n\to \infty</math> אזי <math>\frac{1}{a_n}\to 0</math> | |||
*טענה: תהי <math>0\neq a_n\to 0</math> אזי <math>\frac{1}{|a_n|}\to\infty</math> | |||
<videoflash>U5RUHjrHVGI</videoflash> | <videoflash>U5RUHjrHVGI</videoflash> |
גרסה מ־12:41, 15 באוקטובר 2020
מבחנים ופתרונות
סרטוני ותקציר ההרצאות
פרק 1 - מספרים וחסמים
קבוצות מספרים
- הטבעיים [math]\displaystyle{ \mathbb{N}=\{1,2,3,...\} }[/math]
- השלמים [math]\displaystyle{ \mathbb{Z}=\{0,-1,1,-2,2,...\} }[/math]
- הרציונאליים [math]\displaystyle{ \mathbb{Q}=\left\{\frac{p}{n}|p\in\mathbb{Z},n\in\mathbb{N}\right\} }[/math]
- הממשיים [math]\displaystyle{ \mathbb{R} }[/math], כל השברים העשרוניים כולל האינסופיים
- העשרה: בנייה של שדה הממשיים באמצעות חתכי דדקינד
- לא קיים [math]\displaystyle{ x\in\mathbb{Q} }[/math] כך ש [math]\displaystyle{ x^2=2 }[/math].
- במילים פשוטות, [math]\displaystyle{ \sqrt{2} }[/math] אינו רציונאלי (בהמשך נוכיח שיש מספר ממשי כזה).
חסמים
- תהי [math]\displaystyle{ A\subseteq \mathbb{R} }[/math] אזי:
- [math]\displaystyle{ M\in\mathbb{A} }[/math] נקרא המקסימום של A או האיבר הגדול ביותר של A אם לכל [math]\displaystyle{ a\in A }[/math] מתקיים כי [math]\displaystyle{ a\leq M }[/math]
- [math]\displaystyle{ M\in\mathbb{R} }[/math] נקרא חסם מלעיל של A אם לכל [math]\displaystyle{ a\in A }[/math] מתקיים כי [math]\displaystyle{ a\leq M }[/math]
- [math]\displaystyle{ m\in\mathbb{A} }[/math] נקרא המינימום של A או האיבר הקטן ביותר של A אם לכל [math]\displaystyle{ a\in A }[/math] מתקיים כי [math]\displaystyle{ a\geq M }[/math]
- [math]\displaystyle{ m\in\mathbb{R} }[/math] נקרא חסם מלרע של A אם לכל [math]\displaystyle{ a\in A }[/math] מתקיים כי [math]\displaystyle{ a\geq M }[/math]
- כמו כן:
- אם יש איבר קטן ביותר בקבוצת חסמי המלעיל של A הוא נקרא החסם העליון של A, או הסופרמום של A ומסומן [math]\displaystyle{ \sup(A) }[/math]
- אם יש איבר גדול ביותר בקבוצת חסמי המלרע של A הוא נקרא החסם התחתון של A, או האינפימום של A ומסומן [math]\displaystyle{ \inf(A) }[/math]
- בשדה הממשיים לכל קבוצה לא ריקה וחסומה מלעיל יש חסם עליון, ולכל קבוצה לא ריקה וחסומה מלרע יש חסם תחתון.
- בשדה הרציונאליים זה לא נכון; לקבוצה [math]\displaystyle{ A=\{x\in\mathbb{Q}|x^2\lt 2\} }[/math] אין מספר רציונאלי קטן ביותר מבין חסמי המלעיל שלה.
- תהי [math]\displaystyle{ A\subseteq \mathbb{R} }[/math] ויהי [math]\displaystyle{ M\in\mathbb{R} }[/math] אזי:
- M הוא החסם העליון של A אם ורק אם M הוא חסם מלעיל של A ולכל מספר [math]\displaystyle{ M-\varepsilon\lt M }[/math] קיים מספר [math]\displaystyle{ a\in A }[/math] כך ש [math]\displaystyle{ a\gt M-\varepsilon }[/math]
- m הוא החסם התחתון של A אם ורק אם m הוא חסם מלרע של A ולכל מספר [math]\displaystyle{ m\lt m+\varepsilon }[/math] קיים מספר [math]\displaystyle{ a\in A }[/math] כך ש [math]\displaystyle{ a\lt m+\varepsilon }[/math]
פרק 2 - סדרות
- הגדרת הגבול של סדרה:
- תהי סדרה ממשית [math]\displaystyle{ a_n }[/math] ויהי מספר ממשי [math]\displaystyle{ L\in\mathbb{R} }[/math].
- [math]\displaystyle{ L }[/math] הינו גבול הסדרה [math]\displaystyle{ a_n }[/math] (מסומן [math]\displaystyle{ \lim a_n=L }[/math] או [math]\displaystyle{ a_n\to L }[/math]) אם:
- לכל סביבה של הגבול, קיים מקום בסדרה שאחריו כל איברי הסדרה נמצאים בסביבה הנתונה, כלומר:
- לכל מרחק [math]\displaystyle{ \varepsilon\gt 0 }[/math] קיים מקום [math]\displaystyle{ N\in\mathbb{N} }[/math] כך שאחריו לכל [math]\displaystyle{ n\gt N }[/math] מתקיים כי [math]\displaystyle{ |a_n-L|\lt \varepsilon }[/math]
- נגדיר ש[math]\displaystyle{ a_n\to\infty }[/math] אם לכל [math]\displaystyle{ M\gt 0 }[/math] קיים [math]\displaystyle{ N\in\mathbb{N} }[/math] כך שלכל [math]\displaystyle{ n\gt N }[/math] מתקיים כי [math]\displaystyle{ a_n\gt M }[/math]
- נגדיר ש[math]\displaystyle{ a_n\to -\infty }[/math] אם [math]\displaystyle{ -a_n\to\infty }[/math]
- טענה: תהי [math]\displaystyle{ a_n\to \infty }[/math] אזי [math]\displaystyle{ \frac{1}{a_n}\to 0 }[/math]
- טענה: תהי [math]\displaystyle{ 0\neq a_n\to 0 }[/math] אזי [math]\displaystyle{ \frac{1}{|a_n|}\to\infty }[/math]
פרק 3 - טורים
פרק 4 - פונקציות ורציפות
פרק 5 - גזירות