שיחה:88-133 תשעא סמסטר ב: הבדלים בין גרסאות בדף
שורה 31: | שורה 31: | ||
בשאלה לא אמור להיות נתון גם ש f רציפה ב [a,b] (בקצוות)? או שאפשר להגיד שנגדיר את הפונקציה בקצוות להיות שווה לגבול בקצוות ואז הפונקציה תהיה רציפה ב [a,b]? תודה. | בשאלה לא אמור להיות נתון גם ש f רציפה ב [a,b] (בקצוות)? או שאפשר להגיד שנגדיר את הפונקציה בקצוות להיות שווה לגבול בקצוות ואז הפונקציה תהיה רציפה ב [a,b]? תודה. | ||
לשאלתך - לא אמור להיות נתון המידע על רציפות בקצוות כי מלכתחילה הטענה מתייחסת לקטע הפתוח! | |||
תומר . | |||
== תרגיל 2 == | == תרגיל 2 == | ||
מתי יעלה תרגיל 2? | מתי יעלה תרגיל 2? |
גרסה מ־22:24, 28 בפברואר 2011
הוספת שאלה חדשה
הוסף שאלה חדשה (רשום כותרת לשאלה, רשום את תוכן השאלה ולחץ על שמירה למטה מימין לסיום).
-עזרה על עיצוב הטקסט וכתיב מתמטי תוכלו למצוא כאן
אם אתם רוצים לשאול שאלה עליכם ליצור חשבון משתמש באתר.
שאלות
שאלה 3 בתרגיל 1
אני מניח גם שנתון ש[math]\displaystyle{ f(a) }[/math] שונה מ-[math]\displaystyle{ f(c) }[/math] אחרת פשוט אפשר לקחת פונקציה קבועה ולהפריך?
תודה על התיקון ! חסר היה נתון בשאלה - שתוקן . אנא שימו לב לנוסח המתוקן . תומר .
איפה התרגילים?
לא מופיע קישור לתרגיל /: האם מופיע עכשיו ? תומר .
שאלה 2
אני מניח שהתכוונת כך שמתקיים ולא כך שקיים. נכון? תומר - כתבתי שזה לכל X בקטע ...
ההוכחות בדף המצורף (http://math-wiki.com/images/5/52/11dercon.pdf)
נראה שיש הרבה טעויות ודברים לא מובנים בהוכחות בדף, אנא תקן. למשל ב"ולכן הנקודה a איננה נקודת המינימום של gx בקטע שלנו – ומכאן נקבל a<x0. באופן דומה נוכל להוכיח כי x0<b ולכן קיבלנו : b ≥ 0x≥ a. דבר ראשון, לא הבנתי איך הוכחת ש a<x0, כל מה שאמרת זה a היא אינה נקודת מינמום ש g, איך מפה נובע a<x0?? וחוץ מזה, איך מפה מגיעים ל b ≥ 0x≥ a? לא אמרנו הרגע ש x0 קטן ממש מa ולא קטן שווה? תודה מראש.
ראשית - עצה קטנה לחיים - לפני שאת/ה קובע על מספר הטעויות שקיים בדף (אם יש כאלו בכלל ) - מומלץ שתהיה בטוח שאכן אלו טעויות .רוצה לאמר - בדוק עצמך לפני ... לעניינינו : נקודת מינימום הרי חייבת להיות בקטע (לפחות אחת ) - מרציפות . ונקרא לה x0. על סמך שיקול הנגזרת הימנית של g ב - a , מקבלים לפי הגדרת הגבול של הנגזרת כי המונה באותו ביטוי הינו שלילי מספיק קרוב ל-a . מזה נובע קיום נקודה a+h מימין לa , עבורה ערך g קטן מהערך של g ב- a . לכן ב -a לא יכול להתקבל מינימום כי קיבלנו ערך קטן יותר מהערך שבה בקטע! בדומה עבור בדיקה האם ייתכן שהמינימום יתקבל ב -b . כעת - מקבלים ש- x0 הינה בקטע הפתוח אבל זה גורר שהיא גם בקטע הסגור ! (שים לב לניסוח הטענה במשפט ! ) , אך ספציפית קיבלנו שהיא בקטע הפתוח ושם נוכל ליישם את משפט פרמה .
תומר .
שאלה 2 תרגיל 1
בשאלה לא אמור להיות נתון גם ש f רציפה ב [a,b] (בקצוות)? או שאפשר להגיד שנגדיר את הפונקציה בקצוות להיות שווה לגבול בקצוות ואז הפונקציה תהיה רציפה ב [a,b]? תודה.
לשאלתך - לא אמור להיות נתון המידע על רציפות בקצוות כי מלכתחילה הטענה מתייחסת לקטע הפתוח! תומר .
תרגיל 2
מתי יעלה תרגיל 2?