שיחה:88-112 לינארית 1 סמסטר א תשעב: הבדלים בין גרסאות בדף

מתוך Math-Wiki
 
(235 גרסאות ביניים של 22 משתמשים אינן מוצגות)
שורה 4: שורה 4:
[[שיחה:88-112 לינארית 1 סמסטר א תשעב/ארכיון 1|ארכיון 1]]
[[שיחה:88-112 לינארית 1 סמסטר א תשעב/ארכיון 1|ארכיון 1]]


=שאלות=
[[שיחה:88-112 לינארית 1 סמסטר א תשעב/ארכיון 2|ארכיון 2]]


== תרגיל 6  ==
[[שיחה:88-112 לינארית 1 סמסטר א תשעב/ארכיון 3|ארכיון 3]]


ערב טוב,
=שאלות=
בחלק מתרגיל 6 מופיעה המטלה 5.6 סעיפים א, ב, ג. אני לא מצליח למצוא את סעיף ג, האם מדובר בתרגיל שבעמוד 19 בחוברת?


תודה רבה,
דביר


:: כנראה שזו טעות. תפתרו רק את סעיפים א,ב. :--[[משתמש:מני ש.|מני]]


== תרגיל 6 שאלה 6 סעיף ב' ==
נתון: <math>tr(AA^*)=0</math>
צריך להוכיח: <math>A=0</math>


האם כוכבית משמע transpose במקרה זה?
== אפשר להסביר איפה יהיה השיעור חזרה לא בדיוק הבנתי ==
ואם כן יש לכך הפרכה לדעתי.
:: כוכבית אינה transpose. ההגדרה של כוכבית מופיעה לפני השאלה. קודם מבצעים transpose (שחלוף) של המטריצה ואח"כ מחליפים כל איבר במטריצה שהתקבלה בצמוד המרוכב שלו.
למשל <math>1+i</math> מוחלף ב <math>1-i</math>. :--[[משתמש:מני ש.|מני]]


תודה רבה
תודה(כאילו מה זה חדר המחלקה?)


== בקשר לפתרונות פונדמנטאליים ==
::בנין מתמטיקה, קומה 2, חדר מימין


בעמוד 17 בתרגיל 3.4 צריך להוכיח #L#=H
== גרעין ==
כלומר גודל קבוצת הפתרונות של המערכת הלא הומוגניים שווה לגודל קבוצת הפתרונות ההומוגניים
עכשיו כתבתם בכתה את הביטוי L=v+H האם הכוונה פה היא לחבר פתרון ספציפי של מערכת הומוגונית לכל פתרון בקבוצת הפתרונות של המערכת ההומוגנית?


v=פתרון ספציפי למערכת לא הומוגנית
שלום,
שאני צריכה להוכיח (ker (T שונה מ <0> (בסוגריים מסולסלות) מספיק שאני מראה שיש איבר בקרנל ששונה מאפס?  
תודה.
::כן. --[[משתמש:מני ש.|מני]] 10:52, 3 בפברואר 2012 (IST)


תודה
== הפיכות של מטריצה ==


:: כתוב פעם אחת אצלך "פתרון ספציפי של מערכת הומוגנית" ופעם אחרת "פתרון ספציפי למערכת לא הומוגנית". אני מניח שהמילה "לא"  בטעות לא הוקלדה  בפעם הראשונה.  בקיצור התשובה לשאלתך היא חיובית בהנחה
אם הוכחתי שכפל AB=I, האם זה מראה שA בהכרח הפיכה? או שמא אני צריך להוכיח גם שBA=I ??
שבאמת התכונת לרשום מה שרשמת בפעם השניה:
v=פתרון ספציפי למערכת לא הומוגנית. --[[משתמש:מני ש.|מני]]


== תרגיל 5.6 סעיף א ==
תודה ושבת שלום :)


אוקיי מצאתי את המחלקה הכי גדולה..
::זה נכון רק עבור מטריצות ריבועיות. --[[משתמש:לואי פולב|לואי]] 14:14, 4 בפברואר 2012 (IST)
אבל ניסוח השאלה שם לא ברור לי כל כך, מז"א כך שכל שתי מטריצות במחלקה מתחלפות? הכוונה במחלקה הגדולה ביותר? או בכל מחלקה שהיא מכילה להראות בנפרד? או בכלל הכוונה בין כל שתי מחלקות במוכלות בה?


תודה
אבל זאת לא השאלה... לא, לא חייבים, ניתן להניח בשלילה שA אינה הפיכה ואז יוצא שהדט' של A היא 0 ומכאן שהדט' של AB גם 0 ומכיוון ש-AB=I אז הדט של AB חייב להיות שווה לדט' של I שהיא n (טבעי) ולכן יש סתירה --> A הפיכה.


::יופי. אבל דטרמיננטה מוגדרת רק עבור מטריצות ריבועיות! מה שמחזיר אותנו לתשובתי המקורית...--[[משתמש:לואי פולב|לואי]] 19:46, 6 בפברואר 2012 (IST)


::יש למצוא את המחלקה הגדולה ביותר בה כל שתי מטריצות מתחלפות. אם אתה חושב, למשל, שזאת מחלקת המטריצות האלכסוניות, אז עליך להראות שכל שתי מטריצות אלכסוניות מתחלפות שם, וכמו כן, בכל מחלקה גדולה יותר, לא כל שתי מטריצות מתחלפות. --[[משתמש:לואי פולב|לואי]] 14:12, 11 בדצמבר 2011 (IST)
== שאלה ממבחן ==


אוקיי אבל למה שהראתי שכל שתי מטריצות מתחלפות שם ובקבוצה מעליה לא כל שתי מטריצות מתחלפות זה גורר שהיא הכי גדולה  כך שכל שתי מטריצות מתחלפות בה וכל שאר הסוגים של המטריצות שמוכלים בה גם בהם כל שתי מטריצו מתחלפות..?
תהיו A,B מטריצות מגודל n*n צ"ל: dimcspanAB=dimcspanB-dim(nullA^cspanB התחלתי את הפיתרון בשימוש משפט המימדים ולפני תנאי  dimnullA+rankA=n והגעתי לזה rankA>=dimcspan-dim(nullA^cspanB  האם זה הכיוון או שממש לא?


תודה
== שאלה על שדות ==


== תרגיל 5 ==
עבור שדה כלשהו <math>\mathbb F</math>, האם יש משמעות ל-<math>1/2</math>?
כוונתי לאיבר <math>(1_\mathbb F+1_\mathbb F)^-1</math>, כך שיתנהג כמו <math>1/2</math>. תודה.


היי מני
:לא בהכרח קיים כזה, למשל בשדה ממאפיין 2. מעבר לזה יש לזה שימוש בהוכחות לעיתים, למשל שפונקציה זוגית וגם אי זוגית היא בהכרח פונקצית האפס (שוב, מעל שדה שאינו ממאפיין 2) --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
האם הבודק החזיר לך את תרגיל 5? אם כן יש אפשרות לקחת אותו מהתא שלך?
תודה וערב טוב
רעות


::כן הוא החזיר. מחר (יום שלישי) אני אשים אותו בחדר צילום/הדפסות. זה בקומה של המזכירות. החדר הראשון מימין כשפונים מהכניסה למחלקה לכיוון המזכירות. זה יהיה שם אחרי 11.:--[[משתמש:מני ש.|מני]]
== מבחן ברביעי ==


== בקשר לתרגיל 7 שאלה 3.2 ==
מתי יפרסמו שעות ומיקום הבחינה ברביעי?


האם צריך שם הוכחה כללית למה האיחוד לעולם לא יהיה תת מרחב או צריך פשוט דוגמא נגדית ? תודה
== משפט ההגדרה ==


  יש להוכיח (כפי שכתוב) --[[משתמש:לואי פולב|לואי]] 12:48, 18 בדצמבר 2011 (IST)
גיליתי שהסתבכתי לגמרי עם המשפט הזה (העתקות ליניאריות, כמובן). מה המשפט בדיוק? תודה רבה, אריאל.
::המשפט מופיע בעמ' 54 לאחר תרגיל 1.26. אפשר לקרוא אותו ואם יש עליו שאלות ספציפיות אשמח לענות.  --[[משתמש:מני ש.|מני]] 20:52, 5 בפברואר 2012 (IST)


== תרגיל 7 שאלה 4.3  ==
== מימד מרחב השורות/עמודות ==


ניסיתי לבדוק נכונות/אי נכונות המשוואה דרך תורת הקבוצות או דרך דיאגרמה.. דרך שתיהן לא הצלחתי האם יש עוד דרך? כלומר מלבד לנחש הפרכה או משהו כזה?
אם מבקשים ממני להוכיח שמימד מרחב השורות והעמודות של מטריצה כלשהי שווים, זה בסדר אם לקחתי פשוט מטריצה כללית כלשהי מגדול mxn, והראתי שאחרי דירוג מתקבלים או עמודות אפס או שורות אפס...
או שדרך אחת מהדרכים הקודמות אני אמור לראות בבירור מה קורה שם?
פילגתי את המקרים לפי m>n, m<n, m=n. ואז הגעתי למסקנה הדרושה...


תודה
האם זוהי הוכחה ? או שיש דרך אחרת שצריך לגשת לתרגיל?


:: לא ברור לי לאיזו דיאגרמה התכוונת. בהוכחה אכן אפשר לנסות לפי הגדרות של תתי מרחבים ובשימוש תורת הקבוצות. אפשר לשים לב שאם סעיף א נכון אז בהכרח גם סעיף ג. מצד שני אם יש דוגמא נגדית שמפריכה את ג' היא תהיה גם דוגמא נגדית המפריכה את א'. כדאי גם להסתכל על הטיפ- הפרכה מינימלית שמופיע בספר לפני השאלה. בסעיף ב' אני חושב שהתשובה די ברורה :--[[משתמש:מני ש.|מני]]
תודה רבה!
::לא כ"כ ברור לי האם השאלה כאן היא על הוכחת המשפט הכללי: <math>dim(R(A))=dim(C(A))</math>?
אם כן אז בתרגיל 11.4 בעמ' 48 יש הצעה להוכחת המשפט שנראית די אלגנטית. קצת קשה לי להגיד אם ההוכחה שלך טובה כי היא לא ברורה לי. --[[משתמש:מני ש.|מני]] 20:59, 5 בפברואר 2012 (IST)


== תרגיל 7 שאלה 4.8 ==


לא ברור לי שם מה הכוונה מז"א R בחזקת n ז"א לתת דוגמא ספציפית ? ומה הכוונה שפעם התתי מרחבים הם v1 u1 ופעם אחרת הם V2 U2?
אני אנסה להסביר את ההוכחה, כי סתם מעניין אותי להבין למה היא לא תקפה :)
תודה
לקחתי מטריצה מגודל mxn. מטריצה כללית כמובן בלי שום הגבלות. לאחר מכן דירגתי אותה. ישנם שלוש אפשרויות שונות לדירוג:


:: לא דוגמא ספציפית. מותר לך שתתי המרחבים יהיו תלויים בn. ז"א נניח עבור n=1 אפשר היה למצוא תתי מרחבים כאלה ועבור n=2 היה אפשר למצוא תתי מרחבים שמקיימים הדרוש. עליך למצוא באופן כללי תתי מרחבים של
m<n : ואז יש יותר עמודות ולכן יש עמודות אפסים.  
<math>\Bbb{R}^n</math> שמקיימים מה שכתוב. אפשר להסתכל על זה כשני סעיפים נפרדים. צריך למצוא שני תתי מרחבים שמקיימים את א'.כמו כן צריך למצוא שני תתי מרחבים שמקיימים את ב'. לא צריך(וגם זה לא אפשרי) למצוא שני תתי מרחבים שמקיימים את א' וב' ביחד. הרי בסעיף אחד הסכום הוא מרחב האפס ובסעיף השני הסכום (שהוא גם סכום ישר) הוא כל <math>\Bbb{R}^n</math> :--[[משתמש:מני ש.|מני]]


== תרגיל 7, 2.11 ב ==
n<m : ואז יש יותר שורות ולכן יש שורות אפסים.  


מעל איזה שדה מדובר? תודה.
m=n : ומכאן פשיטא שמדובר בכך ש : dim (r(A)) = dim (c(A)) .
::<math>\Bbb F</math> :--[[משתמש:מני ש.|מני]]
::נכון... ובהמשך לכמה שאלות שקיבלתי במייל: השדה <math>\Bbb F</math>  הוא שדה '''כלשהו'''. --[[משתמש:לואי פולב|לואי]] 10:17, 20 בדצמבר 2011 (IST)


== תשובות ל7.. ==
מכאן אנחנו מקבלים סוג של מטריצה שנראת כמו מטריצת הזהות ומתחתיה כמה שורות של אפשים ( או עמודות) ואין הם תורמים לבסיס, לכן הם לא תורמים גם למימד. מכן שהמימד שווה למטריצה היחידה שנוצרת - בעצם כמות העמודות/שורות בת"ל...::


יש סיכוי שתעלו את הפתרונות של תרגיל 7?
מצטער על הניסוח של ההוכחה, אבל זה נראה לי פשוט מדי, לא כן?


תודה, חג אורים שמח(:


::כן, יש סיכוי. אם רק פך השמן שלי יחזיק מעמד עוד כמה שעות, אולי אסיים אותם כבר הלילה!  --[[משתמש:לואי פולב|לואי]] 23:20, 22 בדצמבר 2011 (IST)


== תרגיל 8 שאלה 4 שלא מהחוברת ==
תודה ולילה טוב :)


האם בסעיף הראשון צריך להוכיח עבור כל 8 האקסיומות? תודה
--[[משתמש:Dvir1352|Dvir1352]] 23:04, 5 בפברואר 2012 (IST)
::הדירוג שאתה מדבר עליו הוא דירוג שורות או דירוג עמודות? לא ברורה לי הטענה:" m<n : ואז יש יותר עמודות ולכן יש שורות אפסים."
למשל במטריצה עם שורה אחת ושתי עמודות <math>(34)</math> יש יותר עמודות משורות והיא מדורגת שורה ואין בה שורות אפסים. --[[משתמש:מני ש.|מני]] 23:11, 5 בפברואר 2012 (IST)




::אפשר, אבל למעשה - אין צורך. מדוע?... --[[משתמש:לואי פולב|לואי]] 23:51, 24 בדצמבר 2011 (IST)
" m<n : ואז יש יותר עמודות ולכן יש שורות אפסים."(התכוונתי יותר עמודות ולכן יש '''עמודות''' אפסים) m זה השורות וn העמודות... אם m גדול מn ז"א שאחרי דירוג (דירוג מטריצה עד לקנונית הכוונה) נקבל מצב בו יש (ע"פ הגדרת המטריצה המדורגת קנונית) שורות שבה כמו מן מדרגות יש אחדים ואחר כך אפסים...
אם ישנם יותר שורות מעמודות, יהיו שורות אפסים, ושוב מאחר והם לא תורמים למימד מימד השורות שווה למימד העמודות...


== תרגיל 8, עמוד 37 בחוברת תרגיל 5.4 ==
סורי על הניסוח הכושל D: תודה רבה!
--[[משתמש:Dvir1352|Dvir1352]] 23:40, 5 בפברואר 2012 (IST)
::אוקיי אני מסכים שבדירוג הקנוני השורות שאינן שורות אפסים מהוות בסיס למרחב השורות. עדיין לא הבנתי איך רואים שמספרן כמספר עמודות הבת"ל. נראה לי שבפורום זה קצת קשה. --[[משתמש:מני ש.|מני]] 00:39, 6 בפברואר 2012 (IST)


האם יש פתרון יותר יעיל מאשר לפתור מטריצה של 6 שורות ו-4 עמודות?


תודה
::נראה לי שיש 3 עמודות. 6 משוואות ב3 נעלמים. לא כ"כ נורא. לא צריך בהכרח למצוא ממש  את הפתרון של המערכת. בכל מקרה כנראה צריך לדרג.--[[משתמש:מני ש.|מני]] 19:12, 25 בדצמבר 2011 (IST)


== תרגיל 8 שאלה מהחוברת 5.6 ==
טוב, תודה, אנסה להגיע ביום שלישי ולהסביר את טענתי :)


לא ברור למה משמש הנתון V1 שונה מ0 הצלחתי להוכיח בלעדיו, כלומר אני לא מבין איך הוא משפיע על ההוכחה? עבור מקרה ספציפי או משהו כזה?
== מתכונן למבחן ==
במבחן הזה[http://u.cs.biu.ac.il/~tsaban/LinearAlgebra/Exams/TAU/LA1_Alesker_2011_06_MA.pdf], שאלה 2 ב'. חשבתי על פתרון ואני לא בטוח אם הוא נכון! בניתי העתקה לינארית ממרחב המטריצות הריבועיות אל F (סקלרים) שהיא העתקה לינארית: [http://latex.codecogs.com/gif.latex?\\T:F^{nxn}%20\to%20F%20\\T(X)=tr(PX)].


תודה
מה שאנחנו צריכים למצוא מהשאלה זה מימד הגרעין של אותה העתקה, ולפי משפט הדרגה הוא שווה למימד של מרחב המט' פחות מימד התמונה. ולכן הוא שווה ל <math>n^2-1</math>.
::יש לך טעות בהוכחה.  הטענה לא נשארת נכונה אם אפשר לקחת <math>v_1=0</math>. דוגמא נגדית:נניח שהמרחב הוקטורי הוא <math>\Bbb {R}^2</math> 
,<math>v_1=(0,0),v_2=(3,5)</math> שני הוקטורים האלו תלויים ליניארית. בכלל אם אחד הוקטורים בקבוצה הוא וקטור האפס אז היא תמיד תהיה ת"ל. אם הטענה כן היתה נכונה, אז במקרה הזה מכיון ש n=2 בהכרח i היחידי המקיים <math>1<i\leq n</math> הוא i=2. המשמעות היתה שניתן להציג את
(3,5) כצירוף ליניארי של וקטור האפס. (כלומר סקלר כפול וקטור האפס ).  אבל זה אינו נכון שכן וקטור האפס כפול כל סקלר יתן את וקטור האפס. אפשר לקבל כיוון להוכחה בספויילר שצירפנו. קצת קשה לי לדעת מה לא נכון בהוכחה שלך מבלי שראיתי אותה. --[[משתמש:מני ש.|מני]] 19:29, 25 בדצמבר 2011 (IST)


פשוט אמרתי שאם זה ת"ל אז צריך לתפוס את הווקטור האחרון שמקדמו שונה מ0 כיוון שכל השאר אחריו יהיו שווים ל-0 ואת אלה שלפניו פשוט נעביר אגף... האם זו הוכחה מספקת? כי היא לא בונה על V1 שונה מ0..
הפתרון הזה נכון? ובנוסף, יש פתרון קל וקצר יותר?
::יש בהוכחה הזאת דווקא הסתמכות על כל שV1 שונה מ0. למעשה זה בדיוק הדבר שחסר בהוכחה. למה? --[[משתמש:מני ש.|מני]] 23:40, 25 בדצמבר 2011 (IST)
::זה נראה לי הפתרון הקצר ביותר (האמת שקשה לי לחשוב בכלל על פתרון אחר). בכל מקרה חסר משהו בפתרון והוא להראות שמימד התמונה=1. מכיון שהתמונה היא ת"מ של <math>\Bbb R</math> משההעתקה אינה העתקת האפס. זה נכון כי <math>P^{-1}</math> מועתקת ל <math>n\neq 0</math> וזה משלים את ההוכחה.
צריך להשתמש בכך ש<math>P</math> הפיכה. --[[משתמש:מני ש.|מני]] 11:24, 6 בפברואר 2012 (IST)


== תרגיל 8 שאלה 5.7 מהחוברת ==
מני, אני מרפרף על כל מני מבחנים, וממש קשה למצוא שאלות ממש קשות, אתה יכול להפנות אותי לכמה?
::מצטער. אין לי מאגר סודי של מבחנים. --[[משתמש:מני ש.|מני]] 12:38, 6 בפברואר 2012 (IST)


האם הכוונה בנתון הראשון מצד ימין בסעיף א ש v1 תלוי לינארית בעצמו לבד וכך הלאה?
== בקשר למימדים של תתי מרחב ==


האם לכל שני תתי מרחבים W,V
Dim(W)+Dim(V)>=Dim(V+W)
?
תודה
תודה
::לא. הכוונה היא שיש צירוף ליניארי לא טריוויאלי של הוקטורים <math>v_1,\ldots v_n</math>
שנותן את וקטור האפס. --[[משתמש:מני ש.|מני]] 19:37, 25 בדצמבר 2011 (IST)


אז זה לא אותו דבר כמו שרשום בצד שמאל? הכוונה שלי אם זה a1v1=0 ,a2v2=0....anvn=0


ו.. a1,a2 עד an כולם שונים מ0 או משהו אחר ?
אם אני לא טועה זה צריך להיות dim(v+w)=dim(v)+dim(w)-dim(u^w)  ...
::לא. מה שצד ימין אומר הוא מה שאמרתי קודם. אפשר לקרוא גם מה שכתוב לפני שאלה 5.1 בספר  (ביתר פירוט).


בצד שמאל משתמשים בהגדרה של קבוצה תלויה ליניארית כפי שהיא מוגדרת ממש לפני שאלה 5.7. ההגדרות יוצאות שקולות (כשהוקטורים שונים), אך צריך להוכיח שאכן זה כך. --[[משתמש:מני ש.|מני]] 22:20, 25 בדצמבר 2011 (IST)
זה משפט המימדים באופן כללי אני מדבר על כל שני תתי מרחב
::אכן אי השוויון מתקיים ואפשר לראות אותו ע"י משפט המימדים.--[[משתמש:מני ש.|מני]] 19:18, 6 בפברואר 2012 (IST)


אז לפי הגדרה שלפני השאלה אומרים לי בעצם שקיימים מספר מסוים של איברים מתוך הקבוצה השונים אחד מהשני כך שצירוף לינארי שלהם נותן 0 אז צ"ל שכל הקבוצה בגלל זה היא ת"ל ולצד השני זהו הדין?


== שאלה 5.7 תרגיל 8 ==
== שאלה מהמבחן ==
חלק א', שאלה 2: [http://math-wiki.com/images/8/8d/11Linear1testA.pdf] יש מספר דרכים דיי גדול לפתור שאלה זו, יש לי פתרון דיי קצר, אבל אני לא בטוח אם היו מקבלים אותו:


שלום למתרגלים
<math>AB=I</math> לכן <math>|AB|=|I|=n</math> מכיוון ו-n טבעי אז הדט' שונה מ-0, ולכן בהכרח <math>|A|\neq 0</math> וגם <math>|B|\neq 0</math> אז B הפיכה ולכן קיימת מט' C כך ש- <math>BC=I</math>. נכפול משמאל ב-A: <math>C=IC=ABC=AI=A</math> ויוצא ש- <math>BA=I</math>.


ישנו סימן # ליד הקבוצה. מה זה אומר?
אז זה פתרון שהיה מתקבל במבחן?
::מספר האיברים בקבוצה--[[משתמש:מני ש.|מני]] 22:15, 25 בדצמבר 2011 (IST)
:: אני גם לא בטוח שהיו מקבלים אותו כי לא למדנו דטרמיננטות.


== שאלה 5.8 א ==
שתי דרכים אופציונליות: א. (סקיצה של הוכחה) אם <math>AB=I</math> ניתן להוכיח ש <math>A</math> אינה שקולת שורה למטריצה עם שורת אפסים בשל השוויון <math>AB=I</math>. כעת הצורה הקנונית של מטריצה ריבועית היא I או שיש בה שורת אפסים (אחת או יותר) לכן לפי הנ"ל הצורה הקנונית של A היא I. לכן קיימת מטריצה הפיכה C (מכפלת מטריצות שורה אלמנטריות) כך ש <math>CA=I</math>. להוכיח ש<math>B=C</math> אפשר בדרך שתוארה קודם.


לא ברור לי מה השאלה שם, האם מתכוונים שאם יש בתת בקבוצה שני איברים לדוגמא שהם ת"ל אז להם ספציפית צריך להוסיף עוד כמה איברים ולבדוק אם היא עדיין תלויה לינארית או שרק מתכוונים שאם יש קבוצה עם שני איברים לדוגמא אז כל קבוצה אחרת בת 3 איברים כלשהם אחרים או לא היא גם ת"ל תחת אותו מרחב ווקטורי
ב.לטובת מי ששאל אותי בשעות קבלה בהקשר של העתקות ליניאריות <math>AB=I </math> גורר ש <math>T_AT_B=I</math> לכן ההעתקה הליניארית <math>T_B</math> חח"ע וההעתקה  <math>T_A</math> על אבל שתי העתקות הן מ<math>F^n</math> לעצמו ולכן חח"ע שקול לעל. מכאן למשל  <math>T_A</math> חח"ע ולכן יש לה גם הופכית שמאלית אבל בדומה להוכחה א ניתן להראות שההופכית הימנית שוה לשמאלית ומכאן <math>T_BT_A=I</math> ולכן <math>BA=I</math>
ג. ראינו בכיתה (בשיעור האחרון לפני שיעור החזרה לדעתי)
עוד הוכחה באמצעות העתקות ליניאריות. --[[משתמש:מני ש.|מני]] 18:03, 7 בפברואר 2012 (IST)


תודה
1)אני כן למדתי דטרמיננטות.


:נתונה A תלוייה לינארית והשאלה היא אם כל תת קבוצה מתוך המרחב הוקטורי V המכילה יותר מ-k איברים היא תלוייה לינארית --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
2) כל עוד לא אמרו לי להוכיח דט' מותר להשתמש בכל משפט שקיים, אפילו מאלגברה לינארית 2. (אני זוכר שאיזה מרצה/ מתרגל אמר את זה)


לא בהכרח להוסיף לאותם איברים ספציפיים עוד איברים יכול להיות קבוצה אחרת בכלל תחת אותו מרחב ווקטורי רק עם יורת איברים,נכון?
3)אין לי מושג מה "אנחנו למדנו" כי אני למדתי את זה בקיץ ואני עושה מועד ג', אז בבקשה תרחיב.
::נכון.--[[משתמש:מני ש.|מני]] 17:53, 31 בדצמבר 2011 (IST)


== בקשר לשעות קבלה עם לואי ==
אני יכול גם במקום זה פשוט לכתוב שבגלל ששורות AB בת"ל וגם <math>F^n=R(AB)\subseteq R(B)\subseteq F^n</math> ולכן שורות B פורשות את המרחב וגם מספרן הוא n ולכן בסיס ולכן בת"ל ולכן B הפיכה.


האם מחר יתקיימו שעות קבלה עם לואי ואם כן מתי?
== מבנה המבחן ==


תודה
מה מבנה המבחן האם הוא כמו המבחן של רזניקוב משנה שעברה?
::יש 3 שאלות ללא בחירה. --[[משתמש:מני ש.|מני]] 17:51, 7 בפברואר 2012 (IST)


תודה!!!
נ.ב כמה זמן זה?


  לא, מחר לא יתקיימו שעות קבלה.--[[משתמש:לואי פולב|לואי]] 22:44, 4 בינואר 2012 (IST)
== מהחוברת של בועז צבאן: עמוד 42 תרגיל 7.17 ==


== תרגיל 9 שאלה 7.16 ==
צריך להוכיח שקילות בין שני תנאים:


שלום למתרגלים
א. <math>B</math> בסיס.


האם צל"ט= צרוף לינארי טריוויאלי או צרוף לא טריוויאלי?
ב. <math>0_V \in B</math> ...


תודה רבה.
איך אפשר להוכיח בין שני התנאים? הרי אם <math>0_V \in B</math> אז <math>B</math> לא בסיס...
 
::זו שאלה שיש בה טעות. פתרנו אותה בתרגול אמור להיות רשום 0 לא שייך לB. --[[משתמש:מני ש.|מני]] 17:50, 7 בפברואר 2012 (IST)
 
  צרוף ליניארי לא טריוויאלי, כלומר צרוף שבו לא כל המקדמים הם אפס. --[[משתמש:לואי פולב|לואי]] 22:45, 4 בינואר 2012 (IST)
 
== שאלה כללית ==
 
האם המרחבים <math>\mathbb{R}_3[x],\mathbb{R}^3,\mathbb{R}^{2\times 2}</math> וכו', הכוונה מעל השדה <math>\mathbb{R}</math>?
 
באופן כללי <math>\mathbb{F}^n</math>,למשל, הכוונה מעל השדה <math>\mathbb{F}</math>?
 
תודה.
::כן. --[[משתמש:מני ש.|מני]] 15:46, 5 בינואר 2012 (IST)
 
== תרגיל 9 שאלה 2 (ג)- תרגילים לא מהחוברת ==
 
היי
התחלתי קצת להתבלבל. אם לדוגמא יש לי ווקטור (0,0) אז הוא לא תת מרחב ממימד אחד כי המימד שלו שווה לאפס.נכון?
עכשיו לגבי כל שאר הווקטורים  האם אני צריכה לבדוק לגביהם את הקריטריון המקוצר? למשל אם יש לי את הווקטור (1,1)  אז אפס נמצא בו, אם אני מחברת אותו עם עצמו אני אקבל וקטור שנמצא במרחב(2,2)
וגם אם אני אכפול בסקלר אני אקבל ווקטור שנמצא במרחב.
האם זאת הכוונה?
:: לגבי השאלה הראשונה את צודקת.
לגבי השאלה השניה אפשר להציג את תת המרחב בצורה מאד מסוימת כך שיהיה ברור שזה ת"מ. סה"כ מספר האיברים במרחב הוקטורי הזה אמור להיות סופי וגם תתי מרחבים שלו הם סופיים ואפשר להגיד בדיוק מה הגודל שלהם. לא ברור לי אם את מתחילה מלמעלה או מלמטה. "מלמעלה" זה שאת מניחה שתת המרחב שלך הוא תת מרחב ומניחה למשל כמו שרשמת ש הוקטור (1,1) נמצא בו ואז מסיקה בדיוק מהו תת המרחב. או שדווקא "מלמטה" את מתחילה מוקטור ספציפי ובונה באמצעותו ת"מ ממימד 1. איזו גישה שתבחרי יכולה להיות בסדר. אם את מייצרת ת"מ את צריכה לשכנע שמדובר בת"מ (לאו דווקא הקריטריון המקוצר). אם את מתחילה מת"מ ומנסה לראות מי בדיוק האיברים שלו בהנחה שאת מניחה שוקטור מסוים נמצא בתוכו גם כאן כמובן יש מה להוכיח. כאמור הכל כאן סופי כך שזה יכול לעזור.
 
--[[משתמש:מני ש.|מני]] 17:53, 5 בינואר 2012 (IST)
 
== בקשר לבת"ל של ווקטורים ==
 
לדוגמא יש לי את הווקטורים (1,2,3) (4,5,6) עכשיו נגיד היינו רוצים לבדוק ת"ל ללא מטירצות דרך משוואות אז היינו מצמידים מקדמים והיה יוצא משהו כזה
4a+b=0
5a+2b=0
6a+3b=0
 
עכשיו לפי השיטה לבדיקת ת"ל צריך להשאיר את הווקטורי שורה כשורות במטריצה שבמשוואות זה בכלל הופך לעמודות ואם אני יכניס את זה כעמודות של משוואות כמו בדוגמא מה אני אמור להסיק? או שזה בכלל לא קשור?


תודה
תודה


::הי, נראה לי שיש כן בלבול בין הטכניקה של שורות לבין הטכניקה של העמודות. נשמח להסביר את זה שוב בשעות קבלה. --[[משתמש:לואי פולב|לואי]] 22:33, 7 בינואר 2012 (IST)
== אורך המבחן ==


== תרגיל 9 שאלה 7.2 סעיף א  ==
כמה זמן הוא המבחן והאם בשביל תוספת הזמן אני צריך להביא את האישור המקורי או שאפשר העתק?
::אני לא בטוח לגבי הזמן. בכל מקרה תשאל את מלי. --[[משתמש:מני ש.|מני]] 19:05, 7 בפברואר 2012 (IST)


בקשר להוכיח שB פורשת אם עשיתי a,b,c,d כפול כל וקטור והשוויתי לווקטור כללי אז אחרי שאני עושה מטריצה אם דירגתי ויצא לי מדורגת ללא שורות אפסים ז"א שהיא פורשת? נכון?
== מציאת בסיס של קבוצה סופית נפרשת ==
תודה


:: עוד בשלב שלפני המטריצה, עלינו לשאול עצמנו: מה מחפשים? מחפשים מצב שבו יש פתרון (מדוע?)... --[[משתמש:לואי פולב|לואי]] 22:34, 7 בינואר 2012 (IST)
שלום,
במידה ונתונים לי ווקטורים  {S = {v1, v2, v3 כאשר מבצעים (Span(S.
במידה ורשמתי את הווקטורים הנתונים v1, v2,v3 כעמודות במטריצה ודרגתי (לפי הדירוג שורות הרגיל), (כגון שמראש נתבקשתי לבדוק האם ווקטור כל שהוא נמצא במרחב הנפרש ע"י קבוצה זו שאז אני רושם את הווקטורים כעמודות ואת הווקטור אותו אני בעמודת הפתרונות ובודק האם קיים צירוף ליניארי וכו'). האם ניתן מהמצב המדורג למצוא את הבסיס של המרחב?
מקווה שהשאלה ברורה..
תודה!


== תרגיל 9, 7.16 ==


'''לגבי הרמז''': צריך להתייחס למרחב העמודות? ואם כן, באיזה טענה או דרך אפשר להשתמש? תודה.


לאחר דירוג מט' (ששורותיה הם S) מקבלים מט' שכל אחד מוקטורי השורה שלה שווים  לצ"ל מסויים (ויחיד) של איברי S כך שהסקלר של אותה מספר השורה שונה מ-0 (<math>u_i=\alpha_1v_1+...+\alpha_iv_i+...+\alpha_nv_n</math> וגם <math>\alpha_i\neq0</math>). בכל מקרה, מה שיוצא לך בשורות לאחר הדירוג הקנוני אלו הם וקטורים בת"ל, לא בהכרח יוצא שהדירוג הקנוני הוא I ולכן לא בהכרח זהו בסיס של המרחב.


::למעשה, שימו לב שניתן להוכיח טענה זאת גם ללא הרמז... --[[משתמש:לואי פולב|לואי]] 12:35, 8 בינואר 2012 (IST)
אני לא בטוח שהסברתי את עצמי כראוי.
כשכתבתי למצוא את הבסיס של המרחב התכוונתי לתת מרחב של F^n אליו שייכים הווקטורים v1-v3; כלומר span של קבוצה תמיד פורש מרחב ווקטורי ולמצוא בסיס הכוונה למצוא קבוצה בת"ל מקסימלית הפורשת את אותו מרחב שה-span של קבוצת הווקטורים הנתונה נותן (יתכן ומרחב זה יהיה חלקי ל- F^n )  במצב כזה מה שידוע לי שניתן לעשות זה לרשום את הווקטורים של הקבוצה הנתונה כווקטורי שורה במטריצה ולדרג, הווקטורים שהתקבלו הם הבסיס של תת המרחב הנפרש ע"י קבוצה זו. השאלת אליה התכוונתי היא, כאשר רשמתי את הווקטורים של הקבוצה הנתונה, כעמודות במטריצה (כגון במצב שתיארתי בשאלה המקורית) ודירגתי (דרוג שורות רגיל), האם אני יכול להסיק על הבסיס של תת המרחב? (כמו שהייתי יכול להסיק אם הייתי רושם את הווקטורים כשורות במטריצה ומדרג).
מקווה שעכשיו זה יותר ברור.. תודה!


אני חשבתי על זה שבמערכת ההומגנית יהיה משתנה חופשי אחד לפחות...
אם זה עמודות מט', אז זה יעבוד רק אם הם בת"ל, אחרת צריך לשים אותם בשורות המט', זה כי אתה עושה פעולות שורה ולכן צ"ל של הוקטורים.
אולי בכל זאת אפשר להגיד משהו על הרמז בחוברת? תודה.


:: בשמחה :).. כדי להשתמש ברמז, עליכם לשים לב (להיזכר) שלפי כפל עמודה ניתן לראות שכל פתרון של מערכת משוואות הוא צרוף ליניארי של עמודות מטריצת המקדמים... מדוע?... --[[משתמש:לואי פולב|לואי]] 14:14, 8 בינואר 2012 (IST)
== שאלה ממבחן ==


== מטריצה ות"ל ==
http://u.cs.biu.ac.il/~tsaban/LinearAlgebra/Exams/LA1_68b.pdf
אני מנסה לפתור את סעיף ג'..
חשבתי על כך שבעצם דרוש לנו: ImT=KerR מסעיף קודם קיבלתי ש.. 2 =(dim(kerT
כך שלפי דעתי יש בעצם 2 אפשרויות לT ולכן מימד V הוא 2..
שינוי לאן שולחים את שני הוקטורים השייכים לImT.. יש 2 אפשרויות לוקטורים ב-kerT
או שיש אפשרות לשלוח את שניהם לאותו וקטור ואז המימד בכלל 4..


אני טיפה בפער, אז יכוליות שעניתם על זה עשרות פעמים, אבל אם מטריצה לא מרובעת, אז היא ת"ל, נכון?
אשמח לעזרה איך פותרים!
 
כי אם יש יותר משתנים ממשוואות אז יש משתנים חופשים, ואם יש יותר משוואות ממשתנים אז יש שורות 0. נכון?
 
 
אם כן, אז כל פעם שאומרים להוכיח שאם K<N זה ת"ל, אז תכלס העיקר זה שN תהיה שונה מK.. אני מובנת?
 
תודה, אפרת
:: אני חושש שלא הבנתי.את צריכה  להבדיל בין תלות ליניארית של שורות מטריצה,לתלות ליניארית של עמודות מטריצה,לתלות ליניארית של וקטורים שנבדקת בשימוש מטריצה. האמירה:מטריצה היא ת"ל, ממש לא ברורה.
--[[משתמש:מני ש.|מני]] 20:46, 11 בינואר 2012 (IST)
 
צודק. אז בקצרה-
העמודות תלויות כשיש יותר משתנים ממשוואות והשורות תלויות כשיש שורות אפסים, נכון?
 
מה בדבר כשבודקים וקטורים במטריצה? מה הכלל?
 
תודה!
::התלות ליניארית של העמודות תלויה בקיום משתנים חופשיים. אם יהיה משתנה חופשי יהיה פתרון לא טריויאלי לAX=0 שמשמעותו קיום צירוף ליניארי לא טריויאלי לעמודות המטריצה. אם מדרגים את המטריצה ומקבלים משתנה חופשי אז העמודות ת"ל, אם כל המשתנים מובילים אז העמודות בת"ל. לכן במידה ויש יותר משתנים ממשואות אכן נקבל תלות ליניארית של העמודות כי בהכרח קים משתנה חופשי. השורות תלויות כשבצורה מדורגת מתקבלת שורת אפסים ובפרט אם במטריצה המקורית היו שורות אפסים.


לגבי בדיקת תלות וקטורים אפשר למקם כשורות במטריצה ואז התלות תהיה לפי הכלל של שורות כלומר אם בדירוג נקבל שורת אפסים. אפשר למקם בעמודות ואז הכל יהיה לפי הכלל של העמודות שציינתי  קודם כלומר קיום משתנה חופשי.--[[משתמש:מני ש.|מני]] 23:48, 12 בינואר 2012 (IST)
מכיוון ולכל שתי הע"ל שונות יש מט' מייצגות שונות אז נמצא את המימד של V רק שנחליף את R,T,O ב-<math>[R]^S_S,[T]^S_S,[O]^S_S</math> ואז אם נותנים משתנים לכל איבר במט' המייצגת של T מקבלים שצריך לבחור 8 משתנים מתוך 16=4x4 זאת אומרת DimV=8.


== תרגיל 7, 4.3 ==
== שאלה על המבחן ==


בפתרון (השני) של '''א''' אני חושב  שאולי יש שגיאה;ווקטור האפס אמור להיות בקבוצות <math>W,V,U</math>, לא?
למה נותנים מבחן שיותר קשה מכל מבחן שנמצא כאן: [http://math-wiki.com/index.php?title=%D7%90%D7%9C%D7%92%D7%91%D7%A8%D7%94_%D7%9C%D7%99%D7%A0%D7%90%D7%A8%D7%99%D7%AA_1/%D7%9E%D7%91%D7%97%D7%A0%D7%99%D7%9D] ובאתר של בועז ורזניקוב?
::נכון. על כל הקבוצות שם בפתרון השני צריך להוסיף span לפני ואז הפתרון נכון. --[[משתמש:מני ש.|מני]] 20:32, 11 בינואר 2012 (IST)
המבחן היה הרבה יותר מדי קשה, פתיר! אבל קשה. מה עליי לעשות/להשיג כדי שיעשו מועד נוסף שיהיה קל בהרבה? אני מרגיש שכל מה שפתרתי לא הכין אותי בכלל למבחן הזה.


תודה רבה.
::היינו שמחים לעזור אבל אנחנו לא הכתובת. מני ולואי
מסכימה עם כל מילה שלך. מבחן קשה מאוד. אנחנו חייבים להפנות את הטענות שלנו לאוזניים הנכונות בתקווה למצוא איזשהו פתרון.


== פיתרון ל9? ==
האם יש סיכוי לפקטור או משהו בסגנון?


תודה צדיקים(:
== תוכלו להעלות את המבחן? ==


::בבקשה, צדיקים... :) הועלה.--[[משתמש:לואי פולב|לואי]] 21:53, 12 בינואר 2012 (IST)
:המבחן היה שאלון סגור...
::אז מתרגלים?
::אין לנו את המבחן. אני מניח שהמרצה יעלה את המבחן עם הפתרונות בימים הקרובים. --[[משתמש:מני ש.|מני]] 00:33, 12 בפברואר 2012 (IST)


== תרגיל 10 שאלה לא מהחוברת ==
== מטריצה הופכית של משולשית עליונה ==


היי
איך מראים שגם היא משולשית עליונה?
האם יש באפשרותכם לתת רמז?
:אפשר באמצעות הנלווית (Adj) --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
האם צריכים לבצע הכלה דו כיוונית?


== שאלה קשה ==


::באופן כללי, כדי להראות הכלה של תתי מרחבים, כדאי לבחור איבר כללי מאגף אחד ולהראות שהוא שייך לאגף השני. ביתר פרוט:יש לקחת איבר כללי, לראות אילו מן תנאים הוא חייב לקיים על מנת להיות שייך לאגף 1, ואז להראות שמהתנאים האלה ניתן להסיק את התנאים המספיקים לכך שהוא יהיה שייך לאגף 2. --[[משתמש:לואי פולב|לואי]] 21:49, 12 בינואר 2012 (IST)
נתון <math>A,B \in \mathbb{R}^{n \times n}, A^2+B^2=AB</math>, וגם <math>AB-BA</math> הפיכה.


== תרגיל מוגבר ביום שני ==
צ"ל ש-n מתחלק ב-3.
: מהנתון נובע ש- <math>\ A^3+B^3=0</math>, מה שמוביל לשער טענה חזקה יותר: אם יש מטריצות ממשיות מסדר n-על-n כך ש-<math>\ A^3+B^3=0</math> ו-<math>AB-BA</math> הפיכה, אז n מתחלק ב-3 (כאן המספר 3 "מוסבר" על-ידי ההנחות). עם זאת, הטענה החזקה אינה נכונה, כפי שמראה הדוגמא <math>\ A = e_{21}-e_{12}-e_{22}, B = e_{21}+e_{22}-e_{12}</math>. [[משתמש:עוזי ו.|עוזי ו.]] 17:43, 11 במרץ 2012 (IST)


האם יהיה תרגיל מוגבר ביום שני בבוקר לסטוזנטים של לואי?
== עוד שאלה לא סטנדרטית ==


תודה מראש :)
נתבונן באוסף כל המטריצות מגודל סופי מעל שדה נתון.
האם קיימות שתי פעולות שביחס אליהן אוסף זה הוא מרחב וקטורי?


::כן, ולא רק לסטודנטים של לואי... כולם מוזמנים :) --[[משתמש:לואי פולב|לואי]] 11:02, 13 בינואר 2012 (IST)
:כן, הסכום של כל שתים וכפל בכל סקלר נותן את מטריצת האפס מגודל אחד על אחד (: --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
::איבר אדיש לחיבור? כפל יחידה?
:::כן, זו לא הייתה הצעה הגיונית כל כך. את הכפל בסקלר אפשר לתקן, אבל אין נייטרלי לחיבור. ובכן, ניתן למצוא העתקה חח"ע ועל מקבוצת כל המטריצות מגודל סופי לשדה וכך להגדיר מ"ו באופן מאולץ משהו. --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
::::הסְבֵר? (דרך לא מוצלחת להדגיש את הדו-משמעות של ציווי ושם עצם, כשמתייחסים לצורות ביטוי שונות)
: הדרך הטובה ביותר היא לחשוב על כל מטריצה כאילו היא מוצבת בפינה השמאלית-עליונה במטריצה אינסופית שכולה אפסים. בשיטה הזו מטריצה בגודל 5x5 היא אוטומטית גם מטריצה 6x6 ו-7x7 וכן הלאה, ולכן אפשר לחבר ולהכפיל כל שתי מטריצות (ובוודאי שאפשר להכפיל כל מטריצה בסקלר).
: אם מעוניינים רק במרחב וקטורי, אפילו האוסף של כל המטריצות הוא כזה. אם רוצים אפשרות להכפיל מטריצות, הוא גדול מדי (כפל של שורה בעמודה ידרוש סיכום אינסוף מכפלות, וזה לא מוגדר מעל שדה כללי, ולא מוגדר בדרך כלל אפילו מעל שדות מיוחדים). הפתרון לעיל מסתפק באוסף המטריצות הסופיות. אפשר לדמיין גם מרחבי-ביניים, קצת גדולים יותר, שבהם הכפל עדיין מוגדר היטב. למשל, המטריצות (האינסופיות) שכל שורה שלהן סופית, או אלו שכל עמודה שלהן סופית. ויש עוד הרבה אפשרויות אחרות (מסובכות יותר; מספרן אינו בן-מניה). [[משתמש:עוזי ו.|עוזי ו.]] 19:12, 18 במרץ 2012 (IST)

גרסה אחרונה מ־17:12, 18 במרץ 2012

חזרה לדף הקורס


גלול לתחתית העמוד


הוספת שאלה חדשה

הוסף שאלה חדשה (רשום כותרת לשאלה, רשום את תוכן השאלה ולחץ על שמירה למטה מימין לסיום).

-עזרה על עיצוב הטקסט וכתיב מתמטי תוכלו למצוא כאן

אם אתם רוצים לשאול שאלה עליכם ליצור חשבון משתמש באתר.

ארכיון

ארכיון 1

ארכיון 2

ארכיון 3

שאלות

אפשר להסביר איפה יהיה השיעור חזרה לא בדיוק הבנתי

תודה(כאילו מה זה חדר המחלקה?)

בנין מתמטיקה, קומה 2, חדר מימין

גרעין

שלום, שאני צריכה להוכיח (ker (T שונה מ <0> (בסוגריים מסולסלות) מספיק שאני מראה שיש איבר בקרנל ששונה מאפס?   תודה.

כן. --מני 10:52, 3 בפברואר 2012 (IST)

הפיכות של מטריצה

אם הוכחתי שכפל AB=I, האם זה מראה שA בהכרח הפיכה? או שמא אני צריך להוכיח גם שBA=I ??

תודה ושבת שלום :)

זה נכון רק עבור מטריצות ריבועיות. --לואי 14:14, 4 בפברואר 2012 (IST)

אבל זאת לא השאלה... לא, לא חייבים, ניתן להניח בשלילה שA אינה הפיכה ואז יוצא שהדט' של A היא 0 ומכאן שהדט' של AB גם 0 ומכיוון ש-AB=I אז הדט של AB חייב להיות שווה לדט' של I שהיא n (טבעי) ולכן יש סתירה --> A הפיכה.

יופי. אבל דטרמיננטה מוגדרת רק עבור מטריצות ריבועיות! מה שמחזיר אותנו לתשובתי המקורית...--לואי 19:46, 6 בפברואר 2012 (IST)

שאלה ממבחן

תהיו A,B מטריצות מגודל n*n צ"ל: dimcspanAB=dimcspanB-dim(nullA^cspanB התחלתי את הפיתרון בשימוש משפט המימדים ולפני תנאי dimnullA+rankA=n והגעתי לזה rankA>=dimcspan-dim(nullA^cspanB האם זה הכיוון או שממש לא?

שאלה על שדות

עבור שדה כלשהו [math]\displaystyle{ \mathbb F }[/math], האם יש משמעות ל-[math]\displaystyle{ 1/2 }[/math]? כוונתי לאיבר [math]\displaystyle{ (1_\mathbb F+1_\mathbb F)^-1 }[/math], כך שיתנהג כמו [math]\displaystyle{ 1/2 }[/math]. תודה.

לא בהכרח קיים כזה, למשל בשדה ממאפיין 2. מעבר לזה יש לזה שימוש בהוכחות לעיתים, למשל שפונקציה זוגית וגם אי זוגית היא בהכרח פונקצית האפס (שוב, מעל שדה שאינו ממאפיין 2) --ארז שיינר

מבחן ברביעי

מתי יפרסמו שעות ומיקום הבחינה ברביעי?

משפט ההגדרה

גיליתי שהסתבכתי לגמרי עם המשפט הזה (העתקות ליניאריות, כמובן). מה המשפט בדיוק? תודה רבה, אריאל.

המשפט מופיע בעמ' 54 לאחר תרגיל 1.26. אפשר לקרוא אותו ואם יש עליו שאלות ספציפיות אשמח לענות. --מני 20:52, 5 בפברואר 2012 (IST)

מימד מרחב השורות/עמודות

אם מבקשים ממני להוכיח שמימד מרחב השורות והעמודות של מטריצה כלשהי שווים, זה בסדר אם לקחתי פשוט מטריצה כללית כלשהי מגדול mxn, והראתי שאחרי דירוג מתקבלים או עמודות אפס או שורות אפס... פילגתי את המקרים לפי m>n, m<n, m=n. ואז הגעתי למסקנה הדרושה...

האם זוהי הוכחה ? או שיש דרך אחרת שצריך לגשת לתרגיל?

תודה רבה!

לא כ"כ ברור לי האם השאלה כאן היא על הוכחת המשפט הכללי: [math]\displaystyle{ dim(R(A))=dim(C(A)) }[/math]?

אם כן אז בתרגיל 11.4 בעמ' 48 יש הצעה להוכחת המשפט שנראית די אלגנטית. קצת קשה לי להגיד אם ההוכחה שלך טובה כי היא לא ברורה לי. --מני 20:59, 5 בפברואר 2012 (IST)


אני אנסה להסביר את ההוכחה, כי סתם מעניין אותי להבין למה היא לא תקפה :) לקחתי מטריצה מגודל mxn. מטריצה כללית כמובן בלי שום הגבלות. לאחר מכן דירגתי אותה. ישנם שלוש אפשרויות שונות לדירוג:

m<n : ואז יש יותר עמודות ולכן יש עמודות אפסים.

n<m : ואז יש יותר שורות ולכן יש שורות אפסים.

m=n : ומכאן פשיטא שמדובר בכך ש : dim (r(A)) = dim (c(A)) .

מכאן אנחנו מקבלים סוג של מטריצה שנראת כמו מטריצת הזהות ומתחתיה כמה שורות של אפשים ( או עמודות) ואין הם תורמים לבסיס, לכן הם לא תורמים גם למימד. מכן שהמימד שווה למטריצה היחידה שנוצרת - בעצם כמות העמודות/שורות בת"ל...::

מצטער על הניסוח של ההוכחה, אבל זה נראה לי פשוט מדי, לא כן?


תודה ולילה טוב :)

--Dvir1352 23:04, 5 בפברואר 2012 (IST)

הדירוג שאתה מדבר עליו הוא דירוג שורות או דירוג עמודות? לא ברורה לי הטענה:" m<n : ואז יש יותר עמודות ולכן יש שורות אפסים."

למשל במטריצה עם שורה אחת ושתי עמודות [math]\displaystyle{ (34) }[/math] יש יותר עמודות משורות והיא מדורגת שורה ואין בה שורות אפסים. --מני 23:11, 5 בפברואר 2012 (IST)


" m<n : ואז יש יותר עמודות ולכן יש שורות אפסים."(התכוונתי יותר עמודות ולכן יש עמודות אפסים) m זה השורות וn העמודות... אם m גדול מn ז"א שאחרי דירוג (דירוג מטריצה עד לקנונית הכוונה) נקבל מצב בו יש (ע"פ הגדרת המטריצה המדורגת קנונית) שורות שבה כמו מן מדרגות יש אחדים ואחר כך אפסים... אם ישנם יותר שורות מעמודות, יהיו שורות אפסים, ושוב מאחר והם לא תורמים למימד מימד השורות שווה למימד העמודות...

סורי על הניסוח הכושל D: תודה רבה! --Dvir1352 23:40, 5 בפברואר 2012 (IST)

אוקיי אני מסכים שבדירוג הקנוני השורות שאינן שורות אפסים מהוות בסיס למרחב השורות. עדיין לא הבנתי איך רואים שמספרן כמספר עמודות הבת"ל. נראה לי שבפורום זה קצת קשה. --מני 00:39, 6 בפברואר 2012 (IST)


טוב, תודה, אנסה להגיע ביום שלישי ולהסביר את טענתי :)

מתכונן למבחן

במבחן הזה[1], שאלה 2 ב'. חשבתי על פתרון ואני לא בטוח אם הוא נכון! בניתי העתקה לינארית ממרחב המטריצות הריבועיות אל F (סקלרים) שהיא העתקה לינארית: [2].

מה שאנחנו צריכים למצוא מהשאלה זה מימד הגרעין של אותה העתקה, ולפי משפט הדרגה הוא שווה למימד של מרחב המט' פחות מימד התמונה. ולכן הוא שווה ל [math]\displaystyle{ n^2-1 }[/math].

הפתרון הזה נכון? ובנוסף, יש פתרון קל וקצר יותר?

זה נראה לי הפתרון הקצר ביותר (האמת שקשה לי לחשוב בכלל על פתרון אחר). בכל מקרה חסר משהו בפתרון והוא להראות שמימד התמונה=1. מכיון שהתמונה היא ת"מ של [math]\displaystyle{ \Bbb R }[/math] מ"ל שההעתקה אינה העתקת האפס. זה נכון כי [math]\displaystyle{ P^{-1} }[/math] מועתקת ל [math]\displaystyle{ n\neq 0 }[/math] וזה משלים את ההוכחה.

צריך להשתמש בכך ש[math]\displaystyle{ P }[/math] הפיכה. --מני 11:24, 6 בפברואר 2012 (IST)

מני, אני מרפרף על כל מני מבחנים, וממש קשה למצוא שאלות ממש קשות, אתה יכול להפנות אותי לכמה?

מצטער. אין לי מאגר סודי של מבחנים. --מני 12:38, 6 בפברואר 2012 (IST)

בקשר למימדים של תתי מרחב

האם לכל שני תתי מרחבים W,V Dim(W)+Dim(V)>=Dim(V+W) ? תודה


אם אני לא טועה זה צריך להיות dim(v+w)=dim(v)+dim(w)-dim(u^w) ...

זה משפט המימדים באופן כללי אני מדבר על כל שני תתי מרחב

אכן אי השוויון מתקיים ואפשר לראות אותו ע"י משפט המימדים.--מני 19:18, 6 בפברואר 2012 (IST)


שאלה מהמבחן

חלק א', שאלה 2: [3] יש מספר דרכים דיי גדול לפתור שאלה זו, יש לי פתרון דיי קצר, אבל אני לא בטוח אם היו מקבלים אותו:

[math]\displaystyle{ AB=I }[/math] לכן [math]\displaystyle{ |AB|=|I|=n }[/math] מכיוון ו-n טבעי אז הדט' שונה מ-0, ולכן בהכרח [math]\displaystyle{ |A|\neq 0 }[/math] וגם [math]\displaystyle{ |B|\neq 0 }[/math] אז B הפיכה ולכן קיימת מט' C כך ש- [math]\displaystyle{ BC=I }[/math]. נכפול משמאל ב-A: [math]\displaystyle{ C=IC=ABC=AI=A }[/math] ויוצא ש- [math]\displaystyle{ BA=I }[/math].

אז זה פתרון שהיה מתקבל במבחן?

אני גם לא בטוח שהיו מקבלים אותו כי לא למדנו דטרמיננטות.

שתי דרכים אופציונליות: א. (סקיצה של הוכחה) אם [math]\displaystyle{ AB=I }[/math] ניתן להוכיח ש [math]\displaystyle{ A }[/math] אינה שקולת שורה למטריצה עם שורת אפסים בשל השוויון [math]\displaystyle{ AB=I }[/math]. כעת הצורה הקנונית של מטריצה ריבועית היא I או שיש בה שורת אפסים (אחת או יותר) לכן לפי הנ"ל הצורה הקנונית של A היא I. לכן קיימת מטריצה הפיכה C (מכפלת מטריצות שורה אלמנטריות) כך ש [math]\displaystyle{ CA=I }[/math]. להוכיח ש[math]\displaystyle{ B=C }[/math] אפשר בדרך שתוארה קודם.

ב.לטובת מי ששאל אותי בשעות קבלה בהקשר של העתקות ליניאריות [math]\displaystyle{ AB=I }[/math] גורר ש [math]\displaystyle{ T_AT_B=I }[/math] לכן ההעתקה הליניארית [math]\displaystyle{ T_B }[/math] חח"ע וההעתקה [math]\displaystyle{ T_A }[/math] על אבל שתי העתקות הן מ[math]\displaystyle{ F^n }[/math] לעצמו ולכן חח"ע שקול לעל. מכאן למשל [math]\displaystyle{ T_A }[/math] חח"ע ולכן יש לה גם הופכית שמאלית אבל בדומה להוכחה א ניתן להראות שההופכית הימנית שוה לשמאלית ומכאן [math]\displaystyle{ T_BT_A=I }[/math] ולכן [math]\displaystyle{ BA=I }[/math] ג. ראינו בכיתה (בשיעור האחרון לפני שיעור החזרה לדעתי) עוד הוכחה באמצעות העתקות ליניאריות. --מני 18:03, 7 בפברואר 2012 (IST)

1)אני כן למדתי דטרמיננטות.

2) כל עוד לא אמרו לי להוכיח דט' מותר להשתמש בכל משפט שקיים, אפילו מאלגברה לינארית 2. (אני זוכר שאיזה מרצה/ מתרגל אמר את זה)

3)אין לי מושג מה "אנחנו למדנו" כי אני למדתי את זה בקיץ ואני עושה מועד ג', אז בבקשה תרחיב.

אני יכול גם במקום זה פשוט לכתוב שבגלל ששורות AB בת"ל וגם [math]\displaystyle{ F^n=R(AB)\subseteq R(B)\subseteq F^n }[/math] ולכן שורות B פורשות את המרחב וגם מספרן הוא n ולכן בסיס ולכן בת"ל ולכן B הפיכה.

מבנה המבחן

מה מבנה המבחן האם הוא כמו המבחן של רזניקוב משנה שעברה?

יש 3 שאלות ללא בחירה. --מני 17:51, 7 בפברואר 2012 (IST)

תודה!!! נ.ב כמה זמן זה?

מהחוברת של בועז צבאן: עמוד 42 תרגיל 7.17

צריך להוכיח שקילות בין שני תנאים:

א. [math]\displaystyle{ B }[/math] בסיס.

ב. [math]\displaystyle{ 0_V \in B }[/math] ...

איך אפשר להוכיח בין שני התנאים? הרי אם [math]\displaystyle{ 0_V \in B }[/math] אז [math]\displaystyle{ B }[/math] לא בסיס...

זו שאלה שיש בה טעות. פתרנו אותה בתרגול אמור להיות רשום 0 לא שייך לB. --מני 17:50, 7 בפברואר 2012 (IST)

תודה

אורך המבחן

כמה זמן הוא המבחן והאם בשביל תוספת הזמן אני צריך להביא את האישור המקורי או שאפשר העתק?

אני לא בטוח לגבי הזמן. בכל מקרה תשאל את מלי. --מני 19:05, 7 בפברואר 2012 (IST)

מציאת בסיס של קבוצה סופית נפרשת

שלום, במידה ונתונים לי ווקטורים {S = {v1, v2, v3 כאשר מבצעים (Span(S. במידה ורשמתי את הווקטורים הנתונים v1, v2,v3 כעמודות במטריצה ודרגתי (לפי הדירוג שורות הרגיל), (כגון שמראש נתבקשתי לבדוק האם ווקטור כל שהוא נמצא במרחב הנפרש ע"י קבוצה זו שאז אני רושם את הווקטורים כעמודות ואת הווקטור אותו אני בעמודת הפתרונות ובודק האם קיים צירוף ליניארי וכו'). האם ניתן מהמצב המדורג למצוא את הבסיס של המרחב? מקווה שהשאלה ברורה.. תודה!


לאחר דירוג מט' (ששורותיה הם S) מקבלים מט' שכל אחד מוקטורי השורה שלה שווים לצ"ל מסויים (ויחיד) של איברי S כך שהסקלר של אותה מספר השורה שונה מ-0 ([math]\displaystyle{ u_i=\alpha_1v_1+...+\alpha_iv_i+...+\alpha_nv_n }[/math] וגם [math]\displaystyle{ \alpha_i\neq0 }[/math]). בכל מקרה, מה שיוצא לך בשורות לאחר הדירוג הקנוני אלו הם וקטורים בת"ל, לא בהכרח יוצא שהדירוג הקנוני הוא I ולכן לא בהכרח זהו בסיס של המרחב.

אני לא בטוח שהסברתי את עצמי כראוי. כשכתבתי למצוא את הבסיס של המרחב התכוונתי לתת מרחב של F^n אליו שייכים הווקטורים v1-v3; כלומר span של קבוצה תמיד פורש מרחב ווקטורי ולמצוא בסיס הכוונה למצוא קבוצה בת"ל מקסימלית הפורשת את אותו מרחב שה-span של קבוצת הווקטורים הנתונה נותן (יתכן ומרחב זה יהיה חלקי ל- F^n ) במצב כזה מה שידוע לי שניתן לעשות זה לרשום את הווקטורים של הקבוצה הנתונה כווקטורי שורה במטריצה ולדרג, הווקטורים שהתקבלו הם הבסיס של תת המרחב הנפרש ע"י קבוצה זו. השאלת אליה התכוונתי היא, כאשר רשמתי את הווקטורים של הקבוצה הנתונה, כעמודות במטריצה (כגון במצב שתיארתי בשאלה המקורית) ודירגתי (דרוג שורות רגיל), האם אני יכול להסיק על הבסיס של תת המרחב? (כמו שהייתי יכול להסיק אם הייתי רושם את הווקטורים כשורות במטריצה ומדרג). מקווה שעכשיו זה יותר ברור.. תודה!

אם זה עמודות מט', אז זה יעבוד רק אם הם בת"ל, אחרת צריך לשים אותם בשורות המט', זה כי אתה עושה פעולות שורה ולכן צ"ל של הוקטורים.

שאלה ממבחן

http://u.cs.biu.ac.il/~tsaban/LinearAlgebra/Exams/LA1_68b.pdf אני מנסה לפתור את סעיף ג'.. חשבתי על כך שבעצם דרוש לנו: ImT=KerR מסעיף קודם קיבלתי ש.. 2 =(dim(kerT כך שלפי דעתי יש בעצם 2 אפשרויות לT ולכן מימד V הוא 2.. שינוי לאן שולחים את שני הוקטורים השייכים לImT.. יש 2 אפשרויות לוקטורים ב-kerT או שיש אפשרות לשלוח את שניהם לאותו וקטור ואז המימד בכלל 4..

אשמח לעזרה איך פותרים!

מכיוון ולכל שתי הע"ל שונות יש מט' מייצגות שונות אז נמצא את המימד של V רק שנחליף את R,T,O ב-[math]\displaystyle{ [R]^S_S,[T]^S_S,[O]^S_S }[/math] ואז אם נותנים משתנים לכל איבר במט' המייצגת של T מקבלים שצריך לבחור 8 משתנים מתוך 16=4x4 זאת אומרת DimV=8.

שאלה על המבחן

למה נותנים מבחן שיותר קשה מכל מבחן שנמצא כאן: [4] ובאתר של בועז ורזניקוב? המבחן היה הרבה יותר מדי קשה, פתיר! אבל קשה. מה עליי לעשות/להשיג כדי שיעשו מועד נוסף שיהיה קל בהרבה? אני מרגיש שכל מה שפתרתי לא הכין אותי בכלל למבחן הזה.

היינו שמחים לעזור אבל אנחנו לא הכתובת. מני ולואי

מסכימה עם כל מילה שלך. מבחן קשה מאוד. אנחנו חייבים להפנות את הטענות שלנו לאוזניים הנכונות בתקווה למצוא איזשהו פתרון.

האם יש סיכוי לפקטור או משהו בסגנון?

תוכלו להעלות את המבחן?

המבחן היה שאלון סגור...
אז מתרגלים?
אין לנו את המבחן. אני מניח שהמרצה יעלה את המבחן עם הפתרונות בימים הקרובים. --מני 00:33, 12 בפברואר 2012 (IST)

מטריצה הופכית של משולשית עליונה

איך מראים שגם היא משולשית עליונה?

אפשר באמצעות הנלווית (Adj) --ארז שיינר

שאלה קשה

נתון [math]\displaystyle{ A,B \in \mathbb{R}^{n \times n}, A^2+B^2=AB }[/math], וגם [math]\displaystyle{ AB-BA }[/math] הפיכה.

צ"ל ש-n מתחלק ב-3.

מהנתון נובע ש- [math]\displaystyle{ \ A^3+B^3=0 }[/math], מה שמוביל לשער טענה חזקה יותר: אם יש מטריצות ממשיות מסדר n-על-n כך ש-[math]\displaystyle{ \ A^3+B^3=0 }[/math] ו-[math]\displaystyle{ AB-BA }[/math] הפיכה, אז n מתחלק ב-3 (כאן המספר 3 "מוסבר" על-ידי ההנחות). עם זאת, הטענה החזקה אינה נכונה, כפי שמראה הדוגמא [math]\displaystyle{ \ A = e_{21}-e_{12}-e_{22}, B = e_{21}+e_{22}-e_{12} }[/math]. עוזי ו. 17:43, 11 במרץ 2012 (IST)

עוד שאלה לא סטנדרטית

נתבונן באוסף כל המטריצות מגודל סופי מעל שדה נתון. האם קיימות שתי פעולות שביחס אליהן אוסף זה הוא מרחב וקטורי?

כן, הסכום של כל שתים וכפל בכל סקלר נותן את מטריצת האפס מגודל אחד על אחד (: --ארז שיינר
איבר אדיש לחיבור? כפל יחידה?
כן, זו לא הייתה הצעה הגיונית כל כך. את הכפל בסקלר אפשר לתקן, אבל אין נייטרלי לחיבור. ובכן, ניתן למצוא העתקה חח"ע ועל מקבוצת כל המטריצות מגודל סופי לשדה וכך להגדיר מ"ו באופן מאולץ משהו. --ארז שיינר
הסְבֵר? (דרך לא מוצלחת להדגיש את הדו-משמעות של ציווי ושם עצם, כשמתייחסים לצורות ביטוי שונות)
הדרך הטובה ביותר היא לחשוב על כל מטריצה כאילו היא מוצבת בפינה השמאלית-עליונה במטריצה אינסופית שכולה אפסים. בשיטה הזו מטריצה בגודל 5x5 היא אוטומטית גם מטריצה 6x6 ו-7x7 וכן הלאה, ולכן אפשר לחבר ולהכפיל כל שתי מטריצות (ובוודאי שאפשר להכפיל כל מטריצה בסקלר).
אם מעוניינים רק במרחב וקטורי, אפילו האוסף של כל המטריצות הוא כזה. אם רוצים אפשרות להכפיל מטריצות, הוא גדול מדי (כפל של שורה בעמודה ידרוש סיכום אינסוף מכפלות, וזה לא מוגדר מעל שדה כללי, ולא מוגדר בדרך כלל אפילו מעל שדות מיוחדים). הפתרון לעיל מסתפק באוסף המטריצות הסופיות. אפשר לדמיין גם מרחבי-ביניים, קצת גדולים יותר, שבהם הכפל עדיין מוגדר היטב. למשל, המטריצות (האינסופיות) שכל שורה שלהן סופית, או אלו שכל עמודה שלהן סופית. ויש עוד הרבה אפשרויות אחרות (מסובכות יותר; מספרן אינו בן-מניה). עוזי ו. 19:12, 18 במרץ 2012 (IST)