משתמש:איתמר שטיין: הבדלים בין גרסאות בדף

מתוך Math-Wiki
אין תקציר עריכה
אין תקציר עריכה
 
(53 גרסאות ביניים של אותו משתמש אינן מוצגות)
שורה 1: שורה 1:
*[[משתמש:איתמר שטיין/הסבר הופכי|הסבר על חישוב הופכי ב <math>\mathbb{Z}_p</math>]]
לפעמים אני מתיימר לטעון שאני דוקטורנט למתמטיקה.




==שאלה 1==
לפעמים אני טוען שאני לומד הצגות של מונואידים. (ההוכחה בנפנופי ידיים)
 
* סעיף ב
 
ידוע כי
<math>\liminf_{n\rightarrow \infty}(a_n \cdot n)>0</math>
 
נניח ש
 
<math>\liminf_{n\rightarrow \infty}(a_n \cdot n)=c>0</math>
 
 
נסמן <math>b_n=a_n\cdot n</math>
 
כלומר
 
<math>\liminf_{n\rightarrow \infty}b_n=c>0</math>
 
 
 
טענת עזר: קיים <math>N</math> כך שאם <math>n>N</math> אז <math>b_n>\frac{c}{2}</math>
 
(במילים אחרות: יש רק מספר סופי של איברים ב <math>b_n</math> שיותר קטנים מ <math>\frac{c}{2}</math>)
 
הוכחה: נניח בשלילה שזה לא נכון, כלומר קיימים אינסוף איברים מ <math>b_n</math> שעבורם <math>b_n\leq \frac{c}{2}</math>
 
אז קיימת תת סדרה <math>b_{n_k}</math> כך ש <math>b_{n_k}\leq \frac{c}{2}</math> לכל <math>k\in \mathbb{N}</math>
 
נשים לב ש <math>b_n</math> היא חסומה מלרע ולכן <math>b_{n_k}</math> חסומה גם מלעיל וגם מלרע.
 
לכן ל <math>b_{n_k}</math> יש תת סדרה מתכנסת <math>b_{n_{k_l}}</math> כך ש
 
<math>\lim_{l\rightarrow\infty}b_{n_{k_l}}\leq \frac {c}{2}</math>
 
וזאת בסתירה לכך ש <math>\liminf_{n\rightarrow \infty}b_n=c>\frac{c}{2}</math>
 
זה מוכיח את טענת העזר.
 
כעת, אנחנו יודעים שהחל מ <math>N\in \mathbb{N}</math> כלשהוא מתקיים
 
<math>b_n>\frac{c}{2}</math>
 
אבל בגלל ש <math>b_n=a_n\cdot n</math> זה אומר שהחל מאותו <math>N\in \mathbb{N}</math> מתקיים
 
<math>a_n > \frac{c}{2} \frac{1}{n}</math>
 
בגלל שהטור
<math>\ \sum_{n=1}^\infty \frac{1}{n}</math>
מתבדר
 
נובע ממבחן ההשוואה לטורים חיוביים שגם הטור <math>\ \sum_{n=1}^\infty  a_n</math> מתבדר.
 
==שאלה 2==

גרסה אחרונה מ־18:11, 20 בפברואר 2014

לפעמים אני מתיימר לטעון שאני דוקטורנט למתמטיקה.


לפעמים אני טוען שאני לומד הצגות של מונואידים. (ההוכחה בנפנופי ידיים)