|
|
(21 גרסאות ביניים של אותו משתמש אינן מוצגות) |
שורה 1: |
שורה 1: |
| *[[משתמש:איתמר שטיין/הסבר הופכי|הסבר על חישוב הופכי ב <math>\mathbb{Z}_p</math>]]
| | לפעמים אני מתיימר לטעון שאני דוקטורנט למתמטיקה. |
|
| |
|
|
| |
|
| ==שאלה 2==
| | לפעמים אני טוען שאני לומד הצגות של מונואידים. (ההוכחה בנפנופי ידיים) |
| | |
| דבר ראשון, בשביל בהירות. נסמן
| |
| | |
| <math>u=\frac{x}{x^2+y^2},\quad v= \frac{y}{x^2+y^2}</math>
| |
| | |
| כך שלמעשה ידוע <math>f_uu+f_vv = 0</math> וצריך להוכיח <math>g_xx+g_yy = 0</math>.
| |
| | |
| נכתוב את הביטויים <math>g_xx,g_yy</math>
| |
| | |
| <math>g_x=f_uu_x+f_vv_x</math>
| |
| | |
| ולכן
| |
| | |
| <math>g_{xx}= (f_uu_x)_x+(f_vv_x)_x=(f_u)_xu_x+f_uu_{xx}+(f_v)_xv_x+f_vv_{xx}</math>
| |
| | |
| <math>=(f_{uu}u_x+f_{uv}v_x)u_x+f_uu_{xx}+(f_{vu}u_x+f_{vv}v_x)v_x+f_vv_{xx}</math>
| |
| | |
| <math>= f_{uu}(u_x)^2+f_{uv}u_xv_x+f_uu_{xx}+f_{vu}u_xv_x+f_{vv}(v_x)^2+f_vv_{xx}</math>
| |
| | |
| באופן דומה
| |
| | |
| <math>g_{yy}=f_{uu}(u_y)^2+f_{uv}u_yv_y+f_uu_{yy}+f_{vu}u_yv_y+f_{vv}(v_y)^2+f_vv_{yy}</math>
| |
| | |
| לכן צריך לחשב את
| |
| | |
| <math>f_{uu}(u_x)^2+f_{uv}u_xv_x+f_uu_{xx}+f_{vu}u_xv_x+f_{vv}(v_x)^2+f_vv_{xx}+f_{uu}(u_y)^2+f_{uv}u_yv_y+f_uu_{yy}+f_{vu}u_yv_y+f_{vv}(v_y)^2+f_vv_{yy}</math>
| |
| | |
| נקבץ את הביטוי בצורה הבאה:
| |
| | |
| <math>(f_{uu}(u_x)^2+f_{uu}(u_y)^2+f_{vv}(v_x)^2+f_{vv}(v_y)^2)+(2f_{uv}u_xv_x+2f_{uv}u_yv_y)+(f_uu_{xx}+f_uu_{yy}+f_vv_{xx}+f_vv_{yy})</math>
| |
גרסה אחרונה מ־18:11, 20 בפברואר 2014
לפעמים אני מתיימר לטעון שאני דוקטורנט למתמטיקה.
לפעמים אני טוען שאני לומד הצגות של מונואידים. (ההוכחה בנפנופי ידיים)