תרגול 8 תשעז: הבדלים בין גרסאות בדף

מתוך Math-Wiki
 
(3 גרסאות ביניים של 2 משתמשים אינן מוצגות)
שורה 1: שורה 1:
חזרה ל[[83-116, בדידה 1 להנדסה, מערכי תרגול|דף מערכי התרגול]].
=יחסים=
=יחסים=
==המכפלה הקרטזית==
==המכפלה הקרטזית==
הגדרה: '''המכפלה הקרטזית''' של שתי קבוצות A וB הינה אוסף כל ה'''זוגות הסדורים''' - <math>A\times B = \{(a,b)|a\in A \and b\in B\}</math>. ההבדל בין זוג סדור לבין קבוצה המכילה זוג איברים היא שהאיברים יכולים להיות שווים בזוג סדור, והסדר שלהם מהותי. כלומר שני האיברים הבאים שונים <math>(1,2),(2,1)</math> והאיבר הבא הינו זוג חוקי <math>(1,1)</math>.
הגדרה: '''המכפלה הקרטזית''' של שתי קבוצות <math>A</math> ו-<math>B</math> הינה אוסף כל ה'''זוגות הסדורים''' - <math>A\times B = \{(a,b)|a\in A \and b\in B\}</math>. ההבדל בין זוג סדור לבין קבוצה המכילה זוג איברים היא שהאיברים יכולים להיות שווים בזוג סדור, והסדר שלהם מהותי. כלומר שני האיברים הבאים שונים <math>(1,2),(2,1)</math> והאיבר הבא הינו זוג חוקי <math>(1,1)</math>.


ניתן להכליל את ההגדרה לעיל לn-יה סדורה - כלומר n איברים מסודרים.
ניתן להכליל את ההגדרה לעיל ל-<math>n</math>-יה סדורה - כלומר <math>n</math> איברים מסודרים.


דוגמא: <math>A=\{1,2,3\}</math> ו<math>B=\{a,b\}</math> אזי מתקיים <math>A\times B =\{(1,a),(2,a),(3,a),(1,b),(2,b),(3,b)\}</math>
דוגמה: <math>A=\{1,2,3\}</math> ו-<math>B=\{a,b\}</math> אזי מתקיים <math>A\times B =\{(1,a),(2,a),(3,a),(1,b),(2,b),(3,b)\}</math>


למתכנתים: זה מאוד דומה ללולאות for מקוננות.


===תרגיל===
===תרגיל===
הוכח שלכל קבוצות A,B,C,D מתקיים <math>(A\times B)\cap (C\times D)=(A\cap C)\times (B\cap D)</math>
הוכח שלכל קבוצות <math>A,B,C,D</math> מתקיים <math>(A\times B)\cap (C\times D)=(A\cap C)\times (B\cap D)</math>


====פתרון====
====פתרון====
<math>(x,y)\in (A\times B)\cap (C\times D) \iff (x,y)\in A\times B \land (x,y)\in C\times D \iff (x\in A \and y\in B) \and (x\in C\and y\in D) \iff (x\in A\and x\in C) \and (y\in B\and y\in D) \iff (x,y)\in (A\cap C)\times (B\cap D)</math>
<math>(x,y)\in (A\times B)\cap (C\times D) \iff </math>
 
<math>(x,y)\in A\times B \land (x,y)\in C\times D \iff</math>
 
<math>(x\in A \and y\in B) \and (x\in C\and y\in D) \iff</math>
 
<math>(x\in A\and x\in C) \and (y\in B\and y\in D) \iff</math>
 
<math>(x,y)\in (A\cap C)\times (B\cap D)</math>


==יחסים כתת קבוצה של הזוגות הסדורים==
==יחסים כתת קבוצה של הזוגות הסדורים==
הגדרה: יהיו A,B קבוצות, <math>R\subseteq A\times B</math>  אזי R יקרא יחס (בין A ל -B).
הגדרה: יהיו <math>A,B</math> קבוצות, <math>R\subseteq A\times B</math>  אזי <math>R</math> יקרא יחס (בין <math>A</math> לבין <math>B</math>).
הרעיון שעומד בבסיסו של יחס הוא האפשרות "להשוות" בין איברי A ל B
הרעיון שעומד בבסיסו של יחס הוא האפשרות "להשוות" בין איברי <math>A</math> ל-<math>B</math>.
דוגמא:  <math>A=\{1,2,3\},B=\{0,2,6\}</math> ונביט בתת הקבוצה <math>R\subseteq A\times B</math> הבאה: <math>R=\{(1,2),(1,6),(2,2),(2,6),(3,6)\}</math>. מה מיוחד בזוגות אלה?


זוגות אלה הינן כל זוגות האיברים (a,b) כך ש <math>a\leq b</math>. (כלומר הגדרנו את היחס המייצג  "קטן שווה")  
דוגמה: <math>A=\{1,2,3\},B=\{0,2,6\}</math> ונביט בתת הקבוצה <math>R\subseteq A\times B</math> הבאה: <math>R=\{(1,2),(1,6),(2,2),(2,6),(3,6)\}</math>. מה מיוחד בזוגות אלה?


הערה: יחס לא חייב לייצג חוקיות מסוימת למשל גם הקבוצה <math>S=\{(1,2),(1,6),(2,0),(2,2)\}</math> היא יחס. גם <math>\emptyset</math> היא יחס. וגם <math>A\times B</math> הוא יחס.
זוגות אלה הינם כל זוגות האיברים <math>(a,b)</math> כך ש-<math>a\leq b</math>. (כלומר הגדרנו את היחס המייצג "קטן שווה").


סימון: אם זוג מסוים, (a,b), נמצא בקבוצת היחס R נהוג לסמן aRb, או <math>(a,b)\in R</math>. (אם יש משמעות ליחס כמו לעיל ניתן גם לסמן פשוט <math>a\leq b</math>.
הערה: יחס לא חייב לייצג חוקיות מסוימת למשל גם הקבוצה <math>S=\{(1,2),(1,6),(2,0),(2,2)\}</math> היא יחס. גם <math>\varnothing</math> היא יחס, וגם <math>A\times B</math> הוא יחס.


סימון: אם זוג מסוים,נניח <math>(a,b)</math>, נמצא בקבוצת היחס <math>R</math> נהוג לסמן <math>aRb</math>, או <math>(a,b)\in R</math>. (אם יש משמעות ליחס כמו לעיל ניתן גם לסמן פשוט <math>a\leq b</math>).


דוגמא: נביט בקבוצת האנשים A. נגדיר את יחס "בן של" על ידי קבוצת הזוגות הסדורים <math>R\subseteq A\times A</math> כך ש <math>(x,y)\in R</math> אם"ם x הוא בן של y. שימו לב שיש משמעות לכיוון היחס, שכן יש הבדל בין העובדה שאני הבן של מישהו לבין העובדה שהוא הבן שלי.
דוגמה: נביט בקבוצת האנשים <math>A</math>. נגדיר את יחס "בן של" על ידי קבוצת הזוגות הסדורים <math>R\subseteq A\times A</math> כך ש-<math>(x,y)\in R</math> אם"ם <math>x</math> הוא בן של <math>y</math>. שימו לב שיש משמעות לכיוון היחס, שכן יש הבדל בין העובדה שאני הבן של מישהו לבין העובדה שהוא הבן שלי.


הגדרה: בהינתן יחס <math>R\subseteq A\times B</math> '''היחס ההפוך''' <math>R^{-1}\subseteq B\times A</math> הוא היחס המוגדר ע"י היפוך הזוגות הסדורים:
הגדרה: בהינתן יחס <math>R\subseteq A\times B</math>, '''היחס ההפוך''' <math>R^{-1}\subseteq B\times A</math> הוא היחס המוגדר ע"י היפוך הזוגות הסדורים:
<math>R^{-1}=\{(b,a):aRb\}</math>
<math>R^{-1}=\{(b,a):aRb\}</math>


הגדרה: תהי קבוצה A. '''יחס הזהות''' הוא <math>R\subseteq A\times A</math> כך ש: <math>I_A=R=\{(a,a):a\in A\}</math>.
הגדרה: תהי קבוצה <math>A</math>. '''יחס הזהות''' על <math>A</math> הוא <math>R\subseteq A\times A</math> כך ש-<math>I_A=R=\{(a,a):a\in A\}</math>.


הגדרה: יהיו A,B,C קבוצות, ו<math>R\subseteq A\times B, S\subseteq B\times C</math> '''היחס ההרכבה/הכפל''' הוא היחס: <math>S\circ R=\{(a,c)\in A\times C | \exists b\in B : (a,b)\in R \land (b,c)\in S\}</math>
הגדרה: יהיו <math>A,B,C</math> קבוצות, ו-<math>R\subseteq A\times B, S\subseteq B\times C</math> '''יחס הכפל''' הוא היחס: <math>RS=\{(a,c)\in A\times C | \exists b\in B : (a,b)\in R \land (b,c)\in S\}</math>.


===תרגיל===
===תרגיל===
יהיו <math>A=\{1,2\}, B=\{3,4,5\}</math>. נגדיר את היחס: <math>R=\{(1,3),(2,4)\}</math>. בדוק האם:
יהיו <math>A=\{1,2\}, B=\{3,4,5\}</math>. נגדיר את היחס: <math>R=\{(1,3),(2,4)\}</math>. בדוק האם:


א. <math>R^{-1}\circ R=I_A</math>
א. <math>RR^{-1}=I_A</math>


ב. <math>R\circ R^{-1}=I_B</math>
ב. <math>R^{-1}R=I_B</math>


==תכונות של יחסים על קבוצה==
==תכונות של יחסים על קבוצה==
הגדרה: יחס R על קבוצה A פירושו <math>R\subseteq A\times A</math>
הגדרה: יחס <math>R</math> על קבוצה <math>A</math> פירושו <math>R\subseteq A\times A</math>.


תהי קבוצה A ויחס R עליה אזי  
תהי קבוצה <math>A</math> ויחס <math>R</math> עליה אזי:
#R נקרא '''רפלקסיבי''' אם כל איבר מקיים את היחס עם עצמו ( מתקיים <math>\forall a\in A:(a,a)\in R</math>)
#<math>R</math> נקרא '''רפלקסיבי''' אם כל איבר מקיים את היחס עם עצמו ( מתקיים <math>\forall a\in A:(a,a)\in R</math>).
#R נקרא '''סימטרי''' אם aRb גורר שגם bRa (מתקיים <math>\forall a,b\in A:[(a,b)\in R \rightarrow (b,a)\in R]</math>)
#<math>R</math> נקרא '''סימטרי''' אם <math>aRb</math> גורר שגם <math>bRa</math> (מתקיים <math>\forall a,b\in A:[(a,b)\in R \rightarrow (b,a)\in R]</math>).
#R נקרא '''טרנזיטיבי''' אם יחס בין ראשון לשני, ויחס בין השני לשלישי גורר יחס בין הראשון לשלישי (מתקיים <math>\forall a,b,c\in A:[((a,b)\in R) \and ((b,c)\in R) \rightarrow ((a,c)\in R)]</math>)
#<math>R</math> נקרא '''טרנזיטיבי''' אם יחס בין ראשון לשני (<math>aRb</math>), ויחס בין השני לשלישי (<math>bRc</math>) גורר יחס בין הראשון לשלישי (<math>aRc</math>). (מתקיים <math>\forall a,b,c\in A:[((a,b)\in R) \and ((b,c)\in R) \rightarrow ((a,c)\in R)]</math>).
#R נקרא '''אנטי סימטרי (חלש)''' אם aRb וגם bRa גורר כי a=b (מתקיים <math>\forall a,b\in A:[(a,b)\in R \and (b,a)\in R \rightarrow a=b]</math> ובאופן שקול: <math>\forall a\neq b\in A: \lnot (aRb\land bRa)</math>)
#<math>R</math> נקרא '''אנטי סימטרי (חלש)''' אם <math>aRb</math> וגם <math>bRa</math> גורר כי <math>a=b</math> (מתקיים <math>\forall a,b\in A:[(a,b)\in R \and (b,a)\in R \rightarrow a=b]</math> ובאופן שקול: <math>\forall a\neq b\in A: \lnot (aRb\land bRa)</math>)


דוגמאות:
דוגמאות:
שורה 55: שורה 66:
*יחס 'קטן שווה' הינו רפלקסיבי, טרנזיטיבי ואנטי סימטרי
*יחס 'קטן שווה' הינו רפלקסיבי, טרנזיטיבי ואנטי סימטרי
*יחס 'קטן ממש' הינו טרנזיטיבי ואנטי-סימטרי
*יחס 'קטן ממש' הינו טרנזיטיבי ואנטי-סימטרי
*יחס 'שיוויון מודולו n' הינו רפלקסיבי, סימטרי וטרנזיטיבי
*יחס 'שיוויון מודולו <math>n</math>' הינו רפלקסיבי, סימטרי וטרנזיטיבי
*יחס 'הכלה' הינו רפלקסיבי, טרנזיטיבי ואנטי-סימטרי
*יחס 'הכלה' הינו רפלקסיבי, טרנזיטיבי ואנטי-סימטרי
*יחס 'a מחלק את b' הינו רפלקסיבי וטרנזיטיבי
*יחס '<math>a</math> מחלק את <math>b</math>' הינו רפלקסיבי וטרנזיטיבי
*יחס 'אדם x שמע על אדם y' הינו רפלקסיבי
*יחס 'אדם <math>x</math> שמע על אדם <math>y</math>' הינו רפלקסיבי


'''הערה:''' יחס יכול להיות גם סימטרי וגם אנטי סימטרי. וכמו כן הוא יכול להיות לא זה ולא זה! לדוגמא: <math>A=\{ 1,2,3\} , R=\{ (1,1)\} , S=\{ (1,2),(2,1),(3,2)\}</math> ואז R גם וגם, S לא ולא.
'''הערה:''' יחס יכול להיות גם סימטרי וגם אנטי סימטרי. וכמו כן הוא יכול להיות לא זה ולא זה! לדוגמה: <math>A=\{ 1,2,3\} , R=\{ (1,1)\} , S=\{ (1,2),(2,1),(3,2)\}</math> ואז <math>R</math> גם וגם, ואילו <math>S</math> לא ולא.

גרסה אחרונה מ־17:04, 5 בדצמבר 2017

חזרה לדף מערכי התרגול.

יחסים

המכפלה הקרטזית

הגדרה: המכפלה הקרטזית של שתי קבוצות [math]\displaystyle{ A }[/math] ו-[math]\displaystyle{ B }[/math] הינה אוסף כל הזוגות הסדורים - [math]\displaystyle{ A\times B = \{(a,b)|a\in A \and b\in B\} }[/math]. ההבדל בין זוג סדור לבין קבוצה המכילה זוג איברים היא שהאיברים יכולים להיות שווים בזוג סדור, והסדר שלהם מהותי. כלומר שני האיברים הבאים שונים [math]\displaystyle{ (1,2),(2,1) }[/math] והאיבר הבא הינו זוג חוקי [math]\displaystyle{ (1,1) }[/math].

ניתן להכליל את ההגדרה לעיל ל-[math]\displaystyle{ n }[/math]-יה סדורה - כלומר [math]\displaystyle{ n }[/math] איברים מסודרים.

דוגמה: [math]\displaystyle{ A=\{1,2,3\} }[/math] ו-[math]\displaystyle{ B=\{a,b\} }[/math] אזי מתקיים [math]\displaystyle{ A\times B =\{(1,a),(2,a),(3,a),(1,b),(2,b),(3,b)\} }[/math]

למתכנתים: זה מאוד דומה ללולאות for מקוננות.

תרגיל

הוכח שלכל קבוצות [math]\displaystyle{ A,B,C,D }[/math] מתקיים [math]\displaystyle{ (A\times B)\cap (C\times D)=(A\cap C)\times (B\cap D) }[/math]

פתרון

[math]\displaystyle{ (x,y)\in (A\times B)\cap (C\times D) \iff }[/math]

[math]\displaystyle{ (x,y)\in A\times B \land (x,y)\in C\times D \iff }[/math]

[math]\displaystyle{ (x\in A \and y\in B) \and (x\in C\and y\in D) \iff }[/math]

[math]\displaystyle{ (x\in A\and x\in C) \and (y\in B\and y\in D) \iff }[/math]

[math]\displaystyle{ (x,y)\in (A\cap C)\times (B\cap D) }[/math]

יחסים כתת קבוצה של הזוגות הסדורים

הגדרה: יהיו [math]\displaystyle{ A,B }[/math] קבוצות, [math]\displaystyle{ R\subseteq A\times B }[/math] אזי [math]\displaystyle{ R }[/math] יקרא יחס (בין [math]\displaystyle{ A }[/math] לבין [math]\displaystyle{ B }[/math]). הרעיון שעומד בבסיסו של יחס הוא האפשרות "להשוות" בין איברי [math]\displaystyle{ A }[/math] ל-[math]\displaystyle{ B }[/math].

דוגמה: [math]\displaystyle{ A=\{1,2,3\},B=\{0,2,6\} }[/math] ונביט בתת הקבוצה [math]\displaystyle{ R\subseteq A\times B }[/math] הבאה: [math]\displaystyle{ R=\{(1,2),(1,6),(2,2),(2,6),(3,6)\} }[/math]. מה מיוחד בזוגות אלה?

זוגות אלה הינם כל זוגות האיברים [math]\displaystyle{ (a,b) }[/math] כך ש-[math]\displaystyle{ a\leq b }[/math]. (כלומר הגדרנו את היחס המייצג "קטן שווה").

הערה: יחס לא חייב לייצג חוקיות מסוימת למשל גם הקבוצה [math]\displaystyle{ S=\{(1,2),(1,6),(2,0),(2,2)\} }[/math] היא יחס. גם [math]\displaystyle{ \varnothing }[/math] היא יחס, וגם [math]\displaystyle{ A\times B }[/math] הוא יחס.

סימון: אם זוג מסוים,נניח [math]\displaystyle{ (a,b) }[/math], נמצא בקבוצת היחס [math]\displaystyle{ R }[/math] נהוג לסמן [math]\displaystyle{ aRb }[/math], או [math]\displaystyle{ (a,b)\in R }[/math]. (אם יש משמעות ליחס כמו לעיל ניתן גם לסמן פשוט [math]\displaystyle{ a\leq b }[/math]).

דוגמה: נביט בקבוצת האנשים [math]\displaystyle{ A }[/math]. נגדיר את יחס "בן של" על ידי קבוצת הזוגות הסדורים [math]\displaystyle{ R\subseteq A\times A }[/math] כך ש-[math]\displaystyle{ (x,y)\in R }[/math] אם"ם [math]\displaystyle{ x }[/math] הוא בן של [math]\displaystyle{ y }[/math]. שימו לב שיש משמעות לכיוון היחס, שכן יש הבדל בין העובדה שאני הבן של מישהו לבין העובדה שהוא הבן שלי.

הגדרה: בהינתן יחס [math]\displaystyle{ R\subseteq A\times B }[/math], היחס ההפוך [math]\displaystyle{ R^{-1}\subseteq B\times A }[/math] הוא היחס המוגדר ע"י היפוך הזוגות הסדורים: [math]\displaystyle{ R^{-1}=\{(b,a):aRb\} }[/math]

הגדרה: תהי קבוצה [math]\displaystyle{ A }[/math]. יחס הזהות על [math]\displaystyle{ A }[/math] הוא [math]\displaystyle{ R\subseteq A\times A }[/math] כך ש-[math]\displaystyle{ I_A=R=\{(a,a):a\in A\} }[/math].

הגדרה: יהיו [math]\displaystyle{ A,B,C }[/math] קבוצות, ו-[math]\displaystyle{ R\subseteq A\times B, S\subseteq B\times C }[/math] יחס הכפל הוא היחס: [math]\displaystyle{ RS=\{(a,c)\in A\times C | \exists b\in B : (a,b)\in R \land (b,c)\in S\} }[/math].

תרגיל

יהיו [math]\displaystyle{ A=\{1,2\}, B=\{3,4,5\} }[/math]. נגדיר את היחס: [math]\displaystyle{ R=\{(1,3),(2,4)\} }[/math]. בדוק האם:

א. [math]\displaystyle{ RR^{-1}=I_A }[/math]

ב. [math]\displaystyle{ R^{-1}R=I_B }[/math]

תכונות של יחסים על קבוצה

הגדרה: יחס [math]\displaystyle{ R }[/math] על קבוצה [math]\displaystyle{ A }[/math] פירושו [math]\displaystyle{ R\subseteq A\times A }[/math].

תהי קבוצה [math]\displaystyle{ A }[/math] ויחס [math]\displaystyle{ R }[/math] עליה אזי:

  1. [math]\displaystyle{ R }[/math] נקרא רפלקסיבי אם כל איבר מקיים את היחס עם עצמו ( מתקיים [math]\displaystyle{ \forall a\in A:(a,a)\in R }[/math]).
  2. [math]\displaystyle{ R }[/math] נקרא סימטרי אם [math]\displaystyle{ aRb }[/math] גורר שגם [math]\displaystyle{ bRa }[/math] (מתקיים [math]\displaystyle{ \forall a,b\in A:[(a,b)\in R \rightarrow (b,a)\in R] }[/math]).
  3. [math]\displaystyle{ R }[/math] נקרא טרנזיטיבי אם יחס בין ראשון לשני ([math]\displaystyle{ aRb }[/math]), ויחס בין השני לשלישי ([math]\displaystyle{ bRc }[/math]) גורר יחס בין הראשון לשלישי ([math]\displaystyle{ aRc }[/math]). (מתקיים [math]\displaystyle{ \forall a,b,c\in A:[((a,b)\in R) \and ((b,c)\in R) \rightarrow ((a,c)\in R)] }[/math]).
  4. [math]\displaystyle{ R }[/math] נקרא אנטי סימטרי (חלש) אם [math]\displaystyle{ aRb }[/math] וגם [math]\displaystyle{ bRa }[/math] גורר כי [math]\displaystyle{ a=b }[/math] (מתקיים [math]\displaystyle{ \forall a,b\in A:[(a,b)\in R \and (b,a)\in R \rightarrow a=b] }[/math] ובאופן שקול: [math]\displaystyle{ \forall a\neq b\in A: \lnot (aRb\land bRa) }[/math])

דוגמאות:

  • יחס 'שיוויון' הינו רפלקסיבי, סימטרי וטרנזיטיבי
  • יחס 'קטן שווה' הינו רפלקסיבי, טרנזיטיבי ואנטי סימטרי
  • יחס 'קטן ממש' הינו טרנזיטיבי ואנטי-סימטרי
  • יחס 'שיוויון מודולו [math]\displaystyle{ n }[/math]' הינו רפלקסיבי, סימטרי וטרנזיטיבי
  • יחס 'הכלה' הינו רפלקסיבי, טרנזיטיבי ואנטי-סימטרי
  • יחס '[math]\displaystyle{ a }[/math] מחלק את [math]\displaystyle{ b }[/math]' הינו רפלקסיבי וטרנזיטיבי
  • יחס 'אדם [math]\displaystyle{ x }[/math] שמע על אדם [math]\displaystyle{ y }[/math]' הינו רפלקסיבי

הערה: יחס יכול להיות גם סימטרי וגם אנטי סימטרי. וכמו כן הוא יכול להיות לא זה ולא זה! לדוגמה: [math]\displaystyle{ A=\{ 1,2,3\} , R=\{ (1,1)\} , S=\{ (1,2),(2,1),(3,2)\} }[/math] ואז [math]\displaystyle{ R }[/math] גם וגם, ואילו [math]\displaystyle{ S }[/math] לא ולא.