88-101 חשיבה מתמטית קיץ תשעא/תרגילים: הבדלים בין גרסאות בדף

מתוך Math-Wiki
(יצירת דף עם התוכן "=תרגיל להגשה ליום רביעי ה20 ביולי=")
 
שורה 1: שורה 1:
=תרגיל להגשה ליום רביעי ה20 ביולי=
=תרגיל 1 להגשה ליום רביעי ה20 ביולי=
==הצרנות==
*הצרן את הטענות הבאות (מותר לכם להשתמש בפרדיקטים סבירים, בתנאי שתגדירו אותם):
**לכל מספר ממשי יש מספר טבעי הגדול ממנו.
**אקסיומת האינדקוציה: אם פרידקט כלשהו אמיתי באחד (<math>P(1)\equiv T</math>) וכמו כן, העובדה שהוא אמיתי עבור n גוררת שהוא אמיתי עבור n+1 אזי הוא אמיתי תמיד.
**x הינו מספר ראשוני (מספר המתחלק רק בעצמו ובאחד).
**כל מספר ראשוני הינו סכום של מספרים זוגיים.
**קיימים אינסוף תאומים (תאומים הם זוג ראשוניים אשר ההפרש בינהם הינו שתים.)
 
==קבוצות==
הגדרה: איחוד של שתי קבוצות A וB הוא קבוצת האיברים שנמצאים לפחות באחת הקבוצות. החיתוך הוא קבוצת האיברים שנמצאים בשתי הקבוצות.
*הצרן תנאי השקול לכך ש-a שייך לאיחוד של הקבוצות A וB
*הצרן תנאי השקול לכך ש-a אינו שייך לאיחוד של הקבוצות A וB
*הצרן תנאי השקול לכך ש-a שייך לחיתוך של הקבוצות A וB
*הצרן תנאי השקול לכך ש-a אינו שייך לחיתוך של הקבוצות A וB
 
הגדרה: קבוצה A מוכלת בקבוצה B  אם בB נמצאים כל האיברים מA (למשל הטבעיים מוכלים בשלמים <math>\mathbb{N}\subseteq\mathbb{Z}</math>, והשלמים מוכלים בממשיים  <math>\mathbb{Z}\subseteq\mathbb{R}</math>).
*הצרן תנאי השקול לכך ש-C מוכלת בחיתוך של A וB
*הצרן תנאי השקול לכך ש-C אינה מוכלת באיחוד של A וB
 
 
(מותר לכם להשתמש בכמתים באופן הבא <math>\forall a\in A, \exists a\in A</math>)

גרסה מ־13:17, 18 ביולי 2011

תרגיל 1 להגשה ליום רביעי ה20 ביולי

הצרנות

  • הצרן את הטענות הבאות (מותר לכם להשתמש בפרדיקטים סבירים, בתנאי שתגדירו אותם):
    • לכל מספר ממשי יש מספר טבעי הגדול ממנו.
    • אקסיומת האינדקוציה: אם פרידקט כלשהו אמיתי באחד ([math]\displaystyle{ P(1)\equiv T }[/math]) וכמו כן, העובדה שהוא אמיתי עבור n גוררת שהוא אמיתי עבור n+1 אזי הוא אמיתי תמיד.
    • x הינו מספר ראשוני (מספר המתחלק רק בעצמו ובאחד).
    • כל מספר ראשוני הינו סכום של מספרים זוגיים.
    • קיימים אינסוף תאומים (תאומים הם זוג ראשוניים אשר ההפרש בינהם הינו שתים.)

קבוצות

הגדרה: איחוד של שתי קבוצות A וB הוא קבוצת האיברים שנמצאים לפחות באחת הקבוצות. החיתוך הוא קבוצת האיברים שנמצאים בשתי הקבוצות.

  • הצרן תנאי השקול לכך ש-a שייך לאיחוד של הקבוצות A וB
  • הצרן תנאי השקול לכך ש-a אינו שייך לאיחוד של הקבוצות A וB
  • הצרן תנאי השקול לכך ש-a שייך לחיתוך של הקבוצות A וB
  • הצרן תנאי השקול לכך ש-a אינו שייך לחיתוך של הקבוצות A וB

הגדרה: קבוצה A מוכלת בקבוצה B אם בB נמצאים כל האיברים מA (למשל הטבעיים מוכלים בשלמים [math]\displaystyle{ \mathbb{N}\subseteq\mathbb{Z} }[/math], והשלמים מוכלים בממשיים [math]\displaystyle{ \mathbb{Z}\subseteq\mathbb{R} }[/math]).

  • הצרן תנאי השקול לכך ש-C מוכלת בחיתוך של A וB
  • הצרן תנאי השקול לכך ש-C אינה מוכלת באיחוד של A וB


(מותר לכם להשתמש בכמתים באופן הבא [math]\displaystyle{ \forall a\in A, \exists a\in A }[/math])