88-112 לינארית 1 תיכוניסטים קיץ תשעא/מערך תרגול/2: הבדלים בין גרסאות בדף

מתוך Math-Wiki
שורה 22: שורה 22:


====ד====
====ד====
מצא מקרה שבו אין פתרונות למערכת הלא הומוגנית, אך יש פתרון יחיד למערכת ההומוגנית
=====פתרון=====
נביט במטריצה <math>A=\begin{pmatrix} 1 & 0 \\ 0 & 1  \\ 0 & 0 \end{pmatrix}</math> ובוקטור הפתרונות <math>A=\begin{pmatrix} 1 \\  1 \\ 1 \end{pmatrix}</math>. במערכת Ax=b ישנה שורת סתירה, ולכן אין לה פתרונות, ואילו למערכת ההומוגנית יש פתרון יחיד (0,0).
====ה====
מצא מקרה שבו אין פתרונות למערכת הלא הומוגנית, אך יש אינסוף פתרונות למערכת ההומוגנית
=====פתרון=====
נביט במטריצה <math>A=\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}</math> ובוקטור הפתרונות <math>A=\begin{pmatrix} 0 \\  1 \end{pmatrix}</math>. במערכת Ax=b מעל הממשיים ישנה שורת סתירה, ולכן אין לה פתרונות, ואילו למערכת ההומוגנית יש אינסוף פתרונות.

גרסה מ־10:23, 19 ביולי 2011

שיעור שני

אלגברת מטריצות

ניתן לבצע את הכפל AB אם"ם מספר העמודות של A זהה למספר השורות של B. אמנם פעולת הכפל נראית משונה, אך נראה בהמשך כי היא משמעותית למדי.

תרגיל 3.4 ג-ז

נתונה מערכת של m משוואות בn נעלמים: Ax=b (זה זמן טוב לראות דוגמא ראשונה של המשמעות של כפל מטריצות). נסמן ב [math]\displaystyle{ H=\{v\in\mathbb{F}^n:Av=0\} }[/math] את קבוצת הפתרונות של המערכת ההומוגנית המתאימה, וב[math]\displaystyle{ L=\{v\in\mathbb{F}^n:Av=b\} }[/math] את קבוצת הפתרונות של המערכת הלא-הומוגנית. הוכח את הטענות הבאות:

ג

אם L אינה קבוצה ריקה, אזי כמות הפתרונות בH שווה לכמות הפתרונות בL

פתרון

נוכיח את הטענה על ידי יצירת פונקציה חח"ע ועל בין H לבין L. יהיה [math]\displaystyle{ x\in L }[/math] כלשהו (הקיים לפי הנתון). נביט בהעתקה [math]\displaystyle{ f:L\rightarrow H }[/math] המוגדרת ע"י [math]\displaystyle{ f(y)=y-x }[/math]. יש להוכיח כי זו אכן פונקציה מוגדרת היטב (כלומר, y-x הוא פתרון של המערכת ההומוגנית) ואז יש להראות כי זה פונקציה חח"ע ועל.

דבר ראשון, נבדוק האם y-x הינו פתרון של המערכת ההומוגנית. [math]\displaystyle{ A(y-x)=Ay-Ax=b-b=0 }[/math] כפי שרצינו.

דבר שני, נניח כי [math]\displaystyle{ y_1\neq y_2 }[/math] לכן ברור ש[math]\displaystyle{ y_1-x\neq y_2-x }[/math] (במילים, לכל שני פתרונות שונים מL מתאימים שני פתרונות שונים בH).

דבר שלישי, נראה כי לכל פתרון y בH, יש פתרון בL הנשלח אליו. פתרון זה הינו כמובן y+x שכן [math]\displaystyle{ A(y+x)=Ay+Ax=0+b=b }[/math].


לכן סה"כ הראנו כי לכל פתרון בL מתאים פתרון יחיד בH ולכן הקבוצות הנ"ל הן באותו גודל.

ד

מצא מקרה שבו אין פתרונות למערכת הלא הומוגנית, אך יש פתרון יחיד למערכת ההומוגנית

פתרון

נביט במטריצה [math]\displaystyle{ A=\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} }[/math] ובוקטור הפתרונות [math]\displaystyle{ A=\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} }[/math]. במערכת Ax=b ישנה שורת סתירה, ולכן אין לה פתרונות, ואילו למערכת ההומוגנית יש פתרון יחיד (0,0).


ה

מצא מקרה שבו אין פתרונות למערכת הלא הומוגנית, אך יש אינסוף פתרונות למערכת ההומוגנית

פתרון

נביט במטריצה [math]\displaystyle{ A=\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} }[/math] ובוקטור הפתרונות [math]\displaystyle{ A=\begin{pmatrix} 0 \\ 1 \end{pmatrix} }[/math]. במערכת Ax=b מעל הממשיים ישנה שורת סתירה, ולכן אין לה פתרונות, ואילו למערכת ההומוגנית יש אינסוף פתרונות.