88-195 בדידה לתיכוניסטים תשעא/מערך שיעור/שיעור 4: הבדלים בין גרסאות בדף
שורה 12: | שורה 12: | ||
*יחס R נקרא '''חד-חד ערכי''' אם <math>[(x,b)\in R] \and [(y,b) \in R] \rightarrow (x=y)</math> (כלומר, היחס ההופכי הינו חד ערכי) | *יחס R נקרא '''חד-חד ערכי''' אם <math>[(x,b)\in R] \and [(y,b) \in R] \rightarrow (x=y)</math> (כלומר, היחס ההופכי הינו חד ערכי) | ||
*יחס R נקרא '''על''' אם <math>\forall b\in B:\exists a\in A:(a,b)\in R</math> כלומר <math>im(R)=B</math> | *יחס R נקרא '''על''' אם <math>\forall b\in B:\exists a\in A:(a,b)\in R</math> כלומר <math>im(R)=B</math> | ||
'''הגדרה:''' | |||
יחס חד ערכי נקרא '''פונקציה'''; נסמן במקרה זה <math>(a,b)\in R\leftrightarrow b=R(a)</math>. |
גרסה מ־06:58, 2 באוגוסט 2011
פונקציות
הגדרה: יהיו A,B קבוצות וR יחס בינהן. אזי:
- התחום של R הינו [math]\displaystyle{ dom(R)=\{a\in A|\exists b\in B:(a,b)\in R\} }[/math]
- התמונה של R הינה [math]\displaystyle{ im(R)=\{b\in B|\exists a\in A:(a,b)\in R\} }[/math]
דוגמא.
- אם R יחס מלא על A אזי האיחוד של התמונה והתחום שווה A
- [math]\displaystyle{ R=\{(1,a),(2,b),(3,a)\} }[/math] אזי התחום הוא [math]\displaystyle{ dom(R)=\{1,2,3\} }[/math] והתמונה הינה [math]\displaystyle{ im(R)=\{a,b\} }[/math]
הגדרה:
- יחס R נקרא חד ערכי אם [math]\displaystyle{ [(x,b)\in R] \and [(x,d) \in R] \rightarrow (d=b) }[/math]
- יחס R נקרא חד-חד ערכי אם [math]\displaystyle{ [(x,b)\in R] \and [(y,b) \in R] \rightarrow (x=y) }[/math] (כלומר, היחס ההופכי הינו חד ערכי)
- יחס R נקרא על אם [math]\displaystyle{ \forall b\in B:\exists a\in A:(a,b)\in R }[/math] כלומר [math]\displaystyle{ im(R)=B }[/math]
הגדרה:
יחס חד ערכי נקרא פונקציה; נסמן במקרה זה [math]\displaystyle{ (a,b)\in R\leftrightarrow b=R(a) }[/math].