27-221 מד"ר למדעי המח חורף תשעב: הבדלים בין גרסאות בדף
Adam Chapman (שיחה | תרומות) (יצירת דף עם התוכן "'''27-221 מד"ר למדעי המח''' מרצה: ד"ר ודים אוסטפנקו מתרגל: אדם צ'פמן ראו גם: * [...") |
Adam Chapman (שיחה | תרומות) |
||
שורה 20: | שורה 20: | ||
== הודעות כלליות == | == הודעות כלליות == | ||
* פתחתי סוף-סוף דף לקורס. אעלה לכאן מעתה את מערכי השיעור (לפחות את עיקרי הדברים) לפני השיעור עצמו על-מנת שיהיה קל יותר לעקוב אחרי מה שנעשה. יקח קצת זמן אך גם אעלה רטרואקטיבית את מערכי השיעור שכבר התקיימו.[[משתמש:Adam Chapman|Adam Chapman]] 22:43, 27 בדצמבר 2011 (IST) | * פתחתי סוף-סוף דף לקורס. אעלה לכאן מעתה את מערכי השיעור (לפחות את עיקרי הדברים) לפני השיעור עצמו על-מנת שיהיה קל יותר לעקוב אחרי מה שנעשה. יקח קצת זמן אך גם אעלה רטרואקטיבית את מערכי השיעור שכבר התקיימו.[[משתמש:Adam Chapman|Adam Chapman]] 22:43, 27 בדצמבר 2011 (IST) | ||
* בקשר לתרגיל שהוצג בכיתה <math>y'=\frac{1+y^2}{1+x^2}</math>, הגענו בכיתה לתשובה <math>1+y^2=\tan{\arctan{1+x^2}+c}</math> ולא פיתחנו אותה הלאה. ישנן זהויות טריגונומטריות (אעלה דף עם החשובות ביניהן) שאחת מהן היא <math>\tan( | * בקשר לתרגיל שהוצג בכיתה <math>y'=\frac{1+y^2}{1+x^2}</math>, הגענו בכיתה לתשובה <math>1+y^2=\tan{\arctan{1+x^2}+c}</math> ולא פיתחנו אותה הלאה. ישנן זהויות טריגונומטריות (אעלה דף עם החשובות ביניהן) שאחת מהן היא <math>\tan(a+b)=\frac{\tan(a)+\tan(b)}{1-\tan(a) \tan(b)}</math>. אם משתמשים בזה אז מקבלים <math>1+y^2=\frac{1+x^2+\tan{c}}{1-(1+x^2) \tan{c}}</math> ואם מסמנים <math>D=\tan{c}</math> אז מקבלים <math>1+y^2=\frac{1+x^2+D}{1-(1+x^2) D}</math>.[[משתמש:Adam Chapman|Adam Chapman]] 22:43, 27 בדצמבר 2011 (IST) |
גרסה מ־20:44, 27 בדצמבר 2011
מרצה: ד"ר ודים אוסטפנקו
מתרגל: אדם צ'פמן
ראו גם:
נושאים מרכזיים
חבורה, מונויד, חבורה למחצה (אגודה).
הודעות כלליות
- פתחתי סוף-סוף דף לקורס. אעלה לכאן מעתה את מערכי השיעור (לפחות את עיקרי הדברים) לפני השיעור עצמו על-מנת שיהיה קל יותר לעקוב אחרי מה שנעשה. יקח קצת זמן אך גם אעלה רטרואקטיבית את מערכי השיעור שכבר התקיימו.Adam Chapman 22:43, 27 בדצמבר 2011 (IST)
- בקשר לתרגיל שהוצג בכיתה [math]\displaystyle{ y'=\frac{1+y^2}{1+x^2} }[/math], הגענו בכיתה לתשובה [math]\displaystyle{ 1+y^2=\tan{\arctan{1+x^2}+c} }[/math] ולא פיתחנו אותה הלאה. ישנן זהויות טריגונומטריות (אעלה דף עם החשובות ביניהן) שאחת מהן היא [math]\displaystyle{ \tan(a+b)=\frac{\tan(a)+\tan(b)}{1-\tan(a) \tan(b)} }[/math]. אם משתמשים בזה אז מקבלים [math]\displaystyle{ 1+y^2=\frac{1+x^2+\tan{c}}{1-(1+x^2) \tan{c}} }[/math] ואם מסמנים [math]\displaystyle{ D=\tan{c} }[/math] אז מקבלים [math]\displaystyle{ 1+y^2=\frac{1+x^2+D}{1-(1+x^2) D} }[/math].Adam Chapman 22:43, 27 בדצמבר 2011 (IST)