משפט ז'ורדן: הבדלים בין גרסאות בדף
שורה 12: | שורה 12: | ||
==משפט ז'ורדן== | ==משפט ז'ורדן== | ||
תהי A מטריצה ריבועית, כך ש[[הפולינום האופייני]] שלה מתפרק לגורמים לינאריים. | תהי A מטריצה ריבועית, כך ש[[הפולינום האופייני]] שלה מתפרק לגורמים לינאריים. אזי A דומה למטריצה אלכסונית בלוקים, כאשר כל בלוקיה הם בצורת ג'ורדן. | ||
בנוסף, צורה זו יחידה עד כדי סדר הבלוקים. | |||
==הוכחה ומציאת מטריצה מז'רדנת== | ==הוכחה ומציאת מטריצה מז'רדנת== | ||
[[מדיה:JordanAll.pdf|סיכום בנושא משפט ז'ורדן על ידי דר' בועז צבאן]] | [[מדיה:JordanAll.pdf|סיכום בנושא משפט ז'ורדן על ידי דר' בועז צבאן]] |
גרסה מ־08:16, 3 בדצמבר 2012
בלוק ז'ורדן
בלוק ז'ורדן הינו מטריצה ריבועית מהצורה
- [math]\displaystyle{ J_n(\lambda):=\begin{pmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots &\vdots \\\vdots & \ddots & \ddots &\lambda & 1\\ 0 & \cdots & \cdots & 0 & \lambda \end{pmatrix} }[/math]
לדוגמא,
- [math]\displaystyle{ J_3(0)=\begin{pmatrix}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{pmatrix} }[/math], [math]\displaystyle{ J_3(2)=\begin{pmatrix}2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2\end{pmatrix} }[/math]
נזכר בסימון של סכום ישר של מטריצות, לדוגמא: [math]\displaystyle{ J_1(2)\oplus J_2(0)\oplus J_2(2)= \begin{pmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 2\end{pmatrix} }[/math]
משפט ז'ורדן
תהי A מטריצה ריבועית, כך שהפולינום האופייני שלה מתפרק לגורמים לינאריים. אזי A דומה למטריצה אלכסונית בלוקים, כאשר כל בלוקיה הם בצורת ג'ורדן. בנוסף, צורה זו יחידה עד כדי סדר הבלוקים.