שיחה:88-113 לינארית 2 סמסטר ב תשעב: הבדלים בין גרסאות בדף

מתוך Math-Wiki
(←‏ג'ירדון מטריצה: פסקה חדשה)
שורה 136: שורה 136:
שלום, מציאת הפולינום האופייני בתשובות נעשתה בצורה קצת שונה מאשר בתרגול- מעניין להבין, תוכלו להסביר קצת על הרציונאל של הפתרון?
שלום, מציאת הפולינום האופייני בתשובות נעשתה בצורה קצת שונה מאשר בתרגול- מעניין להבין, תוכלו להסביר קצת על הרציונאל של הפתרון?
תודה מראש.
תודה מראש.
:: כן, אכן יש לא מעט שיטות יפות למציאות הפולינום המינימלי. לפני כמה שנים הכנתי לעצמי קובץ המרכז כמה שיטות נחמדות, והשיטה שמופיעה בפתרון מופיעה גם שם. אז אתם מוזמנים לעיין :) --[[משתמש:לואי פולב|לואי]] 00:22, 23 ביוני 2012 (IDT)
::[מדיה:minimal_polynomial.pdf | פולינום מינימלי]]


== ג'ירדון מטריצה ==
== ג'ירדון מטריצה ==

גרסה מ־21:22, 22 ביוני 2012

חזרה לדף הקורס


גלול לתחתית העמוד


הוספת שאלה חדשה

הוסף שאלה חדשה (רשום כותרת לשאלה, רשום את תוכן השאלה ולחץ על שמירה למטה מימין לסיום).

-עזרה על עיצוב הטקסט וכתיב מתמטי תוכלו למצוא כאן

אם אתם רוצים לשאול שאלה עליכם ליצור חשבון משתמש באתר.

לשאלות בנוגע לתרגילים

לשאול כאן בבקשה, :), אנו פועלים למען שיפור הסדר באתר, וזה יכול לקרות רק בעזרתכם! D:

שאלות

תרגילי הבית

אפשר בבקשה לפרט יותר בנוגע למועד הגשת התרגילים????? תאריך?

תרגיל 2 שאלה 2

רשום שם W<=U זה אומר מוכל שווה רגיל? כי לא מסומן ככה זה מסומן בגדול שווה של מספרים תדוה

מה לא ברור? רשום במפורש תת מרחב (שכולל את המקרה הפרטי של המרחב כולו).

תרגיל 2 שאלה 4)

האם זה הרכבה למרות שלא רשום עיגול בין הסוגריים? תודה כן.

תרגיל 3

מאוד לא ברור מתי מועד הגשת התרגילים. בתרגיל 3 נתבקשנו לחשב דט' בעזרת אלגוריתם השילוש של גאוס - מה זה?? מתי למדנו את זה??

סמסטר א שילוש מטריצות.

פתרונות לתרגילים לבוחן..

האם יש אפשרות להעלות פתרונות גם לתרגיל 3 ו4 שעתידים להיות בבוחן כדי שיהיה זמן סביר ללמוד..כי גם מה שהגשתי לא חזר אלי וגם אין פיתרונות באתר..


הועלו

שאלה 3 תרגיל 3

האם מספיק להוכיח שהמכנה שונה מ-0 ואז מזה נובע שהביטוי הוא מספר ממשי ולכן קיימים [math]\displaystyle{ a,b \in \mathbb {R} }[/math] כך שהביטוי [math]\displaystyle{ 1-a-b }[/math] שווה לו?


לא.

תרגיל 3 אלה 5 סעיף ב'

לא ברור לי מה בדיוק צריך להוכיח

שהדטרמיננטה שונה מאפס!!!

תרגיל 4 שאלה 1 סעיף א'

הדבר לא מתקיים גם כאשר [math]\displaystyle{ M=0 }[/math] ולכן [math]\displaystyle{ Rank(M) }[/math] יכול להיות שווה ל-0?

שאלה טובה. הייתי צריך לציין במפורש: ההנחה היא שהמטריצה אינה מטריצת האפס. תודה.

הודעה חשובה

הודעה חשובה: שאלה 4 בתרגיל 4 אינה נכללת בחומר לבוחן.

שעות קבלה של טל

האם יש אפשרות להזיז אותם? כיוון שביום שני בשעה 2 יש לנו הרצאה אצל פרופ' רזניקוב.

לגבי פירוק לחילופים זרים

לא הבנתי עדיין את הפרוצדורה למעבר מכפל של מחזורים זרים להרכבה של חילופים. הבנתי איך להפוך תמורה להרכבת מחזורים זרים, אבל הפרוצדורה להפוך למכפלת חילופים לא ברורה לי, אני לפעמים מנחש ויוצא לי נכון, אבל אשמח להסבר כללי איך לעשות זאת לכל רצף של מחזורים..

אפשר לפרק כל תמורה למכפלה של מחזורים זרים וכן למכפלה של חילופים אבל אי אפשר בהכרח לפרק למכפלת חילופים זרים. למשל ב[math]\displaystyle{ S_8 }[/math] נניח אפשר לפרק את המחזור [math]\displaystyle{ (1 3 5 7) }[/math] ל

[math]\displaystyle{ (1 3) (3 5) (5 7) }[/math]. אפשר מזה לנחש את הנוסחא לפירוק של מחזור באורך r ולהוכיח אותה (באינדוקציה על האורך למשל). ואז תמורה כללית מפרקים קודם למכפלת מחזורים זרים ואז כל מחזור מפרקים למכפלת חילופים (לא זרים). --מני 11:25, 1 במאי 2012 (IDT)


אין באופן כללי מעבר למכפלה של חילופים זרים. אבל יש מעבר קנוני למכפלה של חילופים: פרק למחזורים זרים. עתה, לכל מחזור בפירוק שקיבלת [math]\displaystyle{ (a_1 a_2 \dots a_r) }[/math] יש את הפירוק [math]\displaystyle{ (a_1 \ a_2)(a_2 \ a_3) (a_{r-1} \ a_r) }[/math] לחילופים. (טל פרי)

הצגה של מחזור כהרכבת חילופים

למדנו כי מחזור ניתן להצגה לא יחידה כהרכבה של חילופים. הכוונה לא יחידה עד כדי סיבוב וסדר או שיש משהו מעבר לכך? תודה :)

לא. הפירוק לחילופים אינו יחיד עד כדי סדר וסיבוב. לדוגמא המחזור [math]\displaystyle{ (1 / 2 / 3) }[/math] מתפרק ב- 2 האופנים הבאים: [math]\displaystyle{ (1 / 2)(2 / 3) }[/math] ו- [math]\displaystyle{ (1 / 3)(1 / 2) }[/math]. מה שכן לא משתנה זה זוגיות מספר החילופים. דהיינו לא יתכן שמחזור יתפרק למספר זוגי וגם למספר אי זוגי של חילופים. (טל פרי)

תרגיל 3 שאלה 1 (דטרמיננט ראשון מימין)

אמור לצאת -160 לדעתי ולא 160 (לא קריטי, אבל למען הדורות הבאים)

צודק בהחלט. תודה. (טל פרי)

בקשר לתרגיל 3 שאלה 6

למה בהצבה של הפוילנום 2+t הופך ל B+2I? תודה

בוחן

על אילו תרגילי בית יהיה מבוסס הבוחן הקרוב?

בקשר לתרגיל 5

מה זה אומר הסימון צמוד של מטריצה כלומר A (עם גג מעליה)

ברכיבים מופיעים הצמודים המרוכבים של רכיבי A טל

תרגיל 5 שאלה 3/4

יש מצב שסדר התשובות התחלף? שאלה 4 בתשובה של 3 ולהפך? תודה :)

התשובה ברורה מאליה(?) כן. תודה. טל

הוכחה על מטריצות מלוות

תהי [math]\displaystyle{ A }[/math] ריבועית. איך מוכיחים שאם הפולינום האופייני שלה שווה לפולינום המינימלי, אז המטריצה המלווה של הפולינום האופייני שלה דומה ל-[math]\displaystyle{ A }[/math] ?

הגדרה. מרחב וקטורי הוא "ציקלי" ביחס ל-A, אם יש בו וקטור v כך שהוקטורים [math]\displaystyle{ \ \ v,Av,A^2v,\dots,A^{n-1}v }[/math] פורשים את כל המרחב.
טענה. אם הפולינום המינימלי של מטריצה מסדר n הוא ממעלה n, אז המרחב ציקלי ביחס אליה.
(ההוכחה מבוססת על משפט לא קל, הקובע שאפשר לפרק כל מרחב לסכום ישר של תת-מרחבים ציקליים).
פתרון השאלה: לפי הטענה, יש וקטור v כך ש- [math]\displaystyle{ \ \ v,Av,A^2v,\dots,A^{n-1}v }[/math] מהווים בסיס של המרחב. אם נחשב בזהירות את המטריצה המייצגת של העתקת הכפל ב-A לפי הבסיס הזה, נגלה שהיא שווה בדיוק למטריצה המלווה של הפולינום המינימלי של A. לכן A והמטריצה המלווה מייצגים את אותה העתקה בבסיסים שונים, ומכאן שהמטריצות דומות זו לזו. עוזי ו. 00:08, 21 ביוני 2012 (IDT)

תרגיל 9

בשאלה האחרונה הכוונה שלכל v u מתקיים ש<v,u> שווה למה שכתבתם? (כי אתם עשיתם(v,u)...)

כן, זה סימון אפשרי נטסף למכפלה פנימית.

תרגיל 7 מציאת פולינום אופייני

שלום, מציאת הפולינום האופייני בתשובות נעשתה בצורה קצת שונה מאשר בתרגול- מעניין להבין, תוכלו להסביר קצת על הרציונאל של הפתרון? תודה מראש.

כן, אכן יש לא מעט שיטות יפות למציאות הפולינום המינימלי. לפני כמה שנים הכנתי לעצמי קובץ המרכז כמה שיטות נחמדות, והשיטה שמופיעה בפתרון מופיעה גם שם. אז אתם מוזמנים לעיין :) --לואי 00:22, 23 ביוני 2012 (IDT)
[מדיה:minimal_polynomial.pdf | פולינום מינימלי]]

ג'ירדון מטריצה

1.צריך לדעת למצוא P מג'רדנת(לא צורת ג'ורדן) למטריצה? 2.צריך לדעת להוכיח משפטים(מההרצאות)למבחן?

אם אפשר לענות דחוף..