מכינה למחלקת מתמטיקה/מערכי שיעור/4: הבדלים בין גרסאות בדף
שורה 36: | שורה 36: | ||
*<math>sin(2x) < 2sin(x)</math> | *<math>sin(2x) < 2sin(x)</math> | ||
*<math>\sqrt{2}sin^2(x)-(\sqrt{2}+1)sin(x)+1 < 0</math> |
גרסה מ־06:21, 8 באוגוסט 2012
פונקציות טריגונומטריות הופכיות
ניתן להגדיר פונקציה הופכית רק כאשר לכל איבר בתמונה קיים מקור יחיד. לכל פונקציה טריגונומטרית נבחר את התחום המתאים.
- [math]\displaystyle{ arcsin(x):[-1,1]\rightarrow [-\frac{\pi}{2},\frac{\pi}{2}] }[/math]
- [math]\displaystyle{ arccos(x):[-1,1]\rightarrow [0,\pi] }[/math]
- [math]\displaystyle{ arctan(x):[-\infty,\infty]\rightarrow [-\frac{\pi}{2},\frac{\pi}{2}] }[/math]
תרגיל: הוכח כי [math]\displaystyle{ sin\Big(arccos(x)\Big)=\sqrt{1-x^2} }[/math]
תרגילים
מצא לאילו ערכי x מתקיימים אי השיוויונים הבאים:
- [math]\displaystyle{ |cos(x)|\leq \frac{1}{\sqrt{2}} }[/math]
- [math]\displaystyle{ sin(x^2+1)\lt 0 }[/math]
- [math]\displaystyle{ sin(ax)\gt 0 }[/math]
- [math]\displaystyle{ arcsin(|x-1|)\gt \frac{\pi}{4} }[/math]
- [math]\displaystyle{ sin(2x) \lt 2sin(x) }[/math]
- [math]\displaystyle{ \sqrt{2}sin^2(x)-(\sqrt{2}+1)sin(x)+1 \lt 0 }[/math]