משתמש:איתמר שטיין: הבדלים בין גרסאות בדף

מתוך Math-Wiki
אין תקציר עריכה
אין תקציר עריכה
שורה 2: שורה 2:




נזכור כי דרגת העמודות של מטריצה <math>A</math> היא מימד מרחב העמודות (המרחב הנפרש על ידי עמודות <math>A</math>).
הוכחת למת ההחלפה של שטייניץ.


ודרגת השורות של מטריצה <math>A</math> היא מימד מרחב השורות (המרחב הנפרש על ידי שורות <math>A</math>).
ניסוח: יהי <math>V</math> מרחב וקטורי. ותהינה <math>B</math> קבוצה בת"ל ו <math>C</math> קבוצה פורשת
 
אזי לכל <math>b \in B</math> קיים <math>c\in C</math> כך ש <math>(B \backslash \{b\})\cup \{c\}</math> היא גם קבוצה בת"ל.
 
 
הוכחה לכך שדרגת העמודות של מטריצה שווה לדרגת השורות של מטריצה:
 
 
תהי <math>A \in \mathbb{F}^{m\times n}</math> מטריצה כלשהיא ונניח שדרגת העמודות שלה היא <math>k</math>.
 
כלומר <math>dim{C(A)}=k</math>.
 
ההוכחה מחולקת לכמה שלבים.
 
שלב א': למצוא מטריצות <math>D,R</math> כך שמספר העמודות ב <math>D</math> ומספר השורות ב <math>R</math> הם <math>k</math>. ומתקיים <math>A=DR</math>.
 
 
יהיה <math>B=\{b_1,\ldots , b_k\}\subseteq \mathbb{F}^m</math> בסיס עבור <math>C(A)</math>.
 
נסמן ב <math>D</math> את המטריצה שעמודותיה הם איברי <math>B</math>.
 
כלומר
 
<math>D=\begin{bmatrix} |&|&&| \\ b_1 & b_2 & \ldots & b_k \\ |&|&&|  \end{bmatrix}\in \mathbb{F}^{m\times k} </math>
 
 
נשים לב שבגלל ש <math>B</math> בסיס ל <math>C(A)</math> הוא פורש כל עמודה של <math>A</math>.
 
כלומר לכל עמודה <math>C_i(A)</math> מתקיים ש <math>C_i(A)\in span\{b_1,\ldots, b_k\}</math>.
 
נסמן  <math>[C_i(A)]_B=\begin{bmatrix} \alpha_{1,i} \\ \alpha_{2,i} \\ \vdots \\ \alpha_{k,i} \end{bmatrix}</math>
 
כלומר <math>C_i(A) = \alpha_{1,i}b_1+\alpha_{2,i}b_2+\ldots+\alpha_{k,i}b_k</math>
 
כלומר <math> C_i(A)=\begin{bmatrix} |&|&&| \\ b_1 & b_2 & \ldots & b_k \\ |&|&&|  \end{bmatrix} \begin{bmatrix} \alpha_{1,i} \\ \alpha_{2,i} \\ \vdots \\ \alpha_{k,i} \end{bmatrix} = D\begin{bmatrix} \alpha_{1,i} \\ \alpha_{2,i} \\ \vdots \\ \alpha_{k,i} \end{bmatrix} </math>
 
נגדיר מטריצה <math>R \in \mathbb{F}^{k \times n}</math> לפי
<math>R_{i,j}=\alpha_{i,j}</math>.
 
נשים לב ש הכפל <math>DR</math> מוגדר היות ומספר העמודות ב <math>D</math> ומספר השורות ב <math>R</math> הם <math>k</math>.
 
נקבל ש<math>C_i(DR)=DC_i(R)=D\begin{bmatrix} \alpha_{1,i} \\ \alpha_{2,i} \\ \vdots \\ \alpha_{k,i} \end{bmatrix}=C_i(A)</math>
 
כלומר <math>DR=A</math>.
 
סוף שלב א'.
 
שלב ב': לראות ש <math>A=DR</math> אומר שדרגת השורות של <math>A</math> קטנה מדרגת השורות של <math>R</math> ולהסיק מסקנות.
 
 
לפי כפל שורה שורה
<math>R_i(A)=R_i(D)R=D_{i,1}R_1(R)+D_{i,2}R_2(R)+\ldots + D_{i,k}R_k(R)</math>
 
כלומר
 
<math>R_i(A) \in span\{R_1(R),R_2(R), \ldots , R_k(R)\}</math>
 
לכן <math>R(A) \subseteq R(R)</math>
 
ולכן <math>dimR(A) \leq dimR(R) \leq k = dimC(A)</math>
 
(מרחב השורות של המטריצה <math>R</math> לא יכול להיות יותר מ  <math>k</math> כי יש ב <math>R</math> רק <math>k</math> שורות.)
 
זה מוכיח שלכל מטריצה <math>A</math> מתקיים ש <math>dimR(A) \leq dimC(A)</math>.
 
סוף שלב ב'
 
שלב ג': סיום.
 
 
נשים לב ש <math>dimC(A) = dim R(A^t) \leq dimC(A^t) = dimR(A)</math>
 
בסה"כ קיבלנו <math>dimC(A) \leq dimR(A)</math> וגם <math>dimR(A) \leq dimC(A)</math> ולכן
 
<math>dimR(A)=dimC(A)</math> מש"ל.

גרסה מ־14:55, 26 באוגוסט 2012


הוכחת למת ההחלפה של שטייניץ.

ניסוח: יהי [math]\displaystyle{ V }[/math] מרחב וקטורי. ותהינה [math]\displaystyle{ B }[/math] קבוצה בת"ל ו [math]\displaystyle{ C }[/math] קבוצה פורשת אזי לכל [math]\displaystyle{ b \in B }[/math] קיים [math]\displaystyle{ c\in C }[/math] כך ש [math]\displaystyle{ (B \backslash \{b\})\cup \{c\} }[/math] היא גם קבוצה בת"ל.