משפט ז'ורדן: הבדלים בין גרסאות בדף
שורה 22: | שורה 22: | ||
==דוגמאות== | ==דוגמאות== | ||
===ז'ירדון של מטריצה ניליפוטנטית=== | |||
מצא בסיס מז'רדן למטריצה הבאה: | מצא בסיס מז'רדן למטריצה הבאה: | ||
שורה 57: | שורה 58: | ||
*כעת המסלול <math>A^2e_1,Ae_1,e_1</math> הוא חלק של הבסיס המז'רדן '''משמאל לימין'''. שימו לב שסדר הוקטורים בבסיס המז'רדן חשוב מאד. | *כעת המסלול <math>A^2e_1,Ae_1,e_1</math> הוא חלק של הבסיס המז'רדן '''משמאל לימין'''. שימו לב שסדר הוקטורים בבסיס המז'רדן חשוב מאד. | ||
*השלב הבא הוא להשלים את הבסיס שמצאנו (<math>A^2e_1</math>) לבסיס למרחב <math>N(A)\cap C(A^{3-2})=N(A)\cap C(A)</math> מהצורה <math>Av_1,Av_2,...,Av_p</math> באופן הבא: | |||
**נבחר בסיס <math>u_1,...,u_r</math> למרחב העמודות <math>C(A)</math> | |||
**נפתור את המערכת <math>A(a_1u_1+...+a_ru_r)</math> על מנת למצוא בסיס ל <math>N(A)\cap C(A)</math> | |||
**נשמיט וקטורים על מנת שלא תהא תלות לינארית בבסיס שבחרנו עד כה | |||
בדוגמא שלנו, נבחר בסיס למרחב העמודות של A: | |||
:<math>u_1= (0,0,0,1,0)</math> | |||
:<math>u_2= (1,0,-1,0,0)</math> | |||
:<math>u_3= (-1,1,1,0,0)</math> | |||
כעת נפתור את המערכת <math>a_1Au_1+a_2Au_2+a_3Au_3=0</math> |
גרסה מ־12:42, 3 בדצמבר 2012
בלוק ז'ורדן
בלוק ז'ורדן הינו מטריצה ריבועית מהצורה
- [math]\displaystyle{ J_n(\lambda):=\begin{pmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots &\vdots \\\vdots & \ddots & \ddots &\lambda & 1\\ 0 & \cdots & \cdots & 0 & \lambda \end{pmatrix} }[/math]
לדוגמא,
- [math]\displaystyle{ J_3(0)=\begin{pmatrix}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{pmatrix} }[/math], [math]\displaystyle{ J_3(2)=\begin{pmatrix}2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2\end{pmatrix} }[/math]
נזכר בסימון של סכום ישר של מטריצות, לדוגמא: [math]\displaystyle{ J_1(2)\oplus J_2(0)\oplus J_2(2)= \begin{pmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 2\end{pmatrix} }[/math]
משפט ז'ורדן
תהי A מטריצה ריבועית, כך שהפולינום האופייני שלה מתפרק לגורמים לינאריים. אזי A דומה למטריצה אלכסונית בלוקים, כאשר כל בלוקיה הם בצורת ג'ורדן. בנוסף, צורה זו יחידה עד כדי סדר הבלוקים.
הוכחה ומציאת מטריצה מז'רדנת
סיכום בנושא משפט ז'ורדן על ידי דר' בועז צבאן
דוגמאות
ז'ירדון של מטריצה ניליפוטנטית
מצא בסיס מז'רדן למטריצה הבאה:
- [math]\displaystyle{ A=\begin{pmatrix} 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & -1 & 0 & -1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \end{pmatrix} }[/math]
- ראשית, נחשב את הפולינום האופייני [math]\displaystyle{ p_A(x)=x^5 }[/math], כלומר זוהי מטריצה ניליפוטנטית
- שנית, נמצא את הפולינום המינימלי [math]\displaystyle{ m_A(x)=x^3 }[/math], בפרט המטריצה ניליפוטנטית מסדר 3
- כעת נמצא בסיס ל [math]\displaystyle{ C(A^{3-1}) }[/math] מהצורה [math]\displaystyle{ A^2v_1,A^2v_2,...,A^2v_k }[/math] באופן הבא:
- נבחר עמודות של המטריצה [math]\displaystyle{ A^2 }[/math] המהוות בסיס ל- [math]\displaystyle{ C(A^2) }[/math]
- כל עמודה i שבחרנו ניתן להציג כ- [math]\displaystyle{ A^2e_i }[/math]
- [math]\displaystyle{ A^2=\begin{pmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & -1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \end{pmatrix} }[/math]
לכן בסיס למרחב העמודות הינו [math]\displaystyle{ A^2e_1 }[/math]
- כעת המסלול [math]\displaystyle{ A^2e_1,Ae_1,e_1 }[/math] הוא חלק של הבסיס המז'רדן משמאל לימין. שימו לב שסדר הוקטורים בבסיס המז'רדן חשוב מאד.
- השלב הבא הוא להשלים את הבסיס שמצאנו ([math]\displaystyle{ A^2e_1 }[/math]) לבסיס למרחב [math]\displaystyle{ N(A)\cap C(A^{3-2})=N(A)\cap C(A) }[/math] מהצורה [math]\displaystyle{ Av_1,Av_2,...,Av_p }[/math] באופן הבא:
- נבחר בסיס [math]\displaystyle{ u_1,...,u_r }[/math] למרחב העמודות [math]\displaystyle{ C(A) }[/math]
- נפתור את המערכת [math]\displaystyle{ A(a_1u_1+...+a_ru_r) }[/math] על מנת למצוא בסיס ל [math]\displaystyle{ N(A)\cap C(A) }[/math]
- נשמיט וקטורים על מנת שלא תהא תלות לינארית בבסיס שבחרנו עד כה
בדוגמא שלנו, נבחר בסיס למרחב העמודות של A:
- [math]\displaystyle{ u_1= (0,0,0,1,0) }[/math]
- [math]\displaystyle{ u_2= (1,0,-1,0,0) }[/math]
- [math]\displaystyle{ u_3= (-1,1,1,0,0) }[/math]
כעת נפתור את המערכת [math]\displaystyle{ a_1Au_1+a_2Au_2+a_3Au_3=0 }[/math]