שיחה:88-230 אינפי 3 סמסטר א תשעג/קבוצה רגילה: הבדלים בין גרסאות בדף

מתוך Math-Wiki
(←‏תרגיל 9 שאלה 6: פסקה חדשה)
שורה 197: שורה 197:


נראה לי שצריך להיות נתון ש-<math>f,g,h</math> ממחלקה <math>C^1</math>.
נראה לי שצריך להיות נתון ש-<math>f,g,h</math> ממחלקה <math>C^1</math>.
תשובה: שוב אתם צודקים. לא יודע מה קרה לי עם התרגיל הזה... כל כך הרבה טעויות.--[[משתמש:איתמר שטיין|איתמר שטיין]] 15:51, 1 בינואר 2013 (IST)

גרסה מ־13:51, 1 בינואר 2013

חזרה לדף הקורס


גלול לתחתית העמוד


הוספת שאלה חדשה

הוסף שאלה חדשה (רשום כותרת לשאלה, רשום את תוכן השאלה ולחץ על שמירה למטה מימין לסיום).

-עזרה על עיצוב הטקסט וכתיב מתמטי תוכלו למצוא כאן

אם אתם רוצים לשאול שאלה עליכם ליצור חשבון משתמש באתר.

שאלות

תרגיל 1 שאלה 5

בג' אין טעות??? לא צריך להיות רשום בעבור כל x,y ששייכים לA??,כתוב במקום בעבור כל x,y ששייכים לX


צודק. זה צריך להיות [math]\displaystyle{ x,y \in A }[/math]. יתוקן בקרוב.--איתמר שטיין 17:44, 25 באוקטובר 2012 (IST)

תוקן --איתמר שטיין 20:17, 25 באוקטובר 2012 (IST)

תרגיל 1 שאלה 6 ו7

בשביל קבוצה פתוחה או סגורה,צריך לדעת באיזו מטריקה מדובר,אז.... באיזו מטריקה מדובר??


לעצם השאלה - מדובר במטריקה האוקלידית הסטנדרטית [math]\displaystyle{ d_2 }[/math].

חוץ מזה, זה לא מדויק להגיד שצריך לדעת באיזה מטריקה מדובר. כי כמו שראינו - מטריקות שקולות יוצרות את אותן קבוצות פתוחות, אז באותה מידה אפשר להשתמש בכל מטריקה [math]\displaystyle{ d_p }[/math] שנוצרת ע"י [math]\displaystyle{ ||\quad||_p }[/math].--איתמר שטיין 20:55, 25 באוקטובר 2012 (IST)


למה לא?יש אינספור מטריקות שלא שקולות אחת לשנייה...


לא אמרתי שזה לא נכון, רק שזה לא מדויק.

בכל אופן לא צריך להתווכח על זה.

אם ברור לשנינו ש

1) עבור כל מטריקה מהמשפחה [math]\displaystyle{ d_p }[/math] זה לא משנה איזה מטריקה בוחרים.

2) הכוונה בשאלה היא למטריקות מהמשפחה הזאת - (וזאת הכוונה תמיד אם לא אומרים במפורש באיזה מטריקה משתמשים)

אז אנחנו מבינים אחד את השני.--איתמר שטיין 19:05, 27 באוקטובר 2012 (IST)

תרגיל 1 שאלה 7

לא הבנתי מניסוח השאלה האם באפשרויות הסיווג של הקבוצות ניתן לבחור גם באופציה לא פתוחה ולא סגורה?

תשובה: כן, אלה שתי שאלות נפרדות. האם היא פתוחה? והאם היא סגורה? יכול להיות שהתשובה לשתיהן היא לא.--איתמר שטיין 16:25, 29 באוקטובר 2012 (IST)

בנוגע לשעת הקבלה ביום ראשון

בימי ראשון בשעה 14:00 עד 15:30 מתקיימת ההרצאה באינפי3, יש אפשרות לשנות את מועד שעת הקבלה? כמו כן, תודה על שינוי שם הקבוצה! :)

תשובה: כן, אפשר. לא הייתי מודע לשעות של ההרצאה. אני אשנה את זה ל 15:30 עד 16:30--איתמר שטיין 13:18, 31 באוקטובר 2012 (IST)

תודה רבה!

תרגיל 2 שאלה 3

לא הבנתי את ההגדרה של A+B. אפשר דוגמא או הסבר? תודה :)

תשובה:

ההגדרה היא [math]\displaystyle{ A+B = \{a+b\mid a\in A, \quad b\in B\} }[/math].

כלומר האיברים ב [math]\displaystyle{ A+B }[/math] הם הוקטורים שאפשר לכתוב כחיבור של שני וקטורים אחרים, אחד מ [math]\displaystyle{ A }[/math] ואחד מ [math]\displaystyle{ B }[/math].

זה כמו חיבור של תתי מרחבים וקטוריים שלמדתם באלגברה לינארית 1, רק שכאן אנחנו מחברים קבוצות כלשהן שהן לא בהכרח מרחבים וקטוריים.

למשל:

1) אם [math]\displaystyle{ A=\{(a_1,a_2)\} }[/math] ו [math]\displaystyle{ B=\{(b_1,b_2)\} }[/math] (שתיהן קבוצות בנות נקודה אחת) אז [math]\displaystyle{ A+B = \{(a_1+b_1,a_2+b_2)\} }[/math]..

2) אם [math]\displaystyle{ A=\{(x,0) \mid x\in \mathbb{R}\} }[/math] ו [math]\displaystyle{ B=\{(0,x) \mid x\in \mathbb{R}\} }[/math] - כלומר [math]\displaystyle{ A }[/math] היא ציר [math]\displaystyle{ x }[/math] ו [math]\displaystyle{ B }[/math] הוא ציר [math]\displaystyle{ y }[/math] אז [math]\displaystyle{ A+B = \mathbb{R}^2 }[/math] כי כל וקטור במרחב הוא צירוף של וקטור מציר [math]\displaystyle{ x }[/math] ווקטור מציר [math]\displaystyle{ y }[/math].

3) אם [math]\displaystyle{ A= \{(x,0) \mid x\in \mathbb{R}\} }[/math] ו [math]\displaystyle{ B=\{(1,1),(0,-1)\} }[/math] אז [math]\displaystyle{ A+B=\{(x,y) \mid y\in \{1,-1\}\} }[/math]. --איתמר שטיין 12:11, 5 בנובמבר 2012 (IST)

קבוצות קשירות

האם הקבוצה הריקה או קבוצה בעלת איבר אחד היא קשירה?

תשובה: גם הקבוצה הריקה וגם קבוצה בעלת איבר אחד הן קשירות. וזה אפילו די פשוט להראות את זה מההגדרה.--איתמר שטיין 12:03, 5 בנובמבר 2012 (IST)

תרגיל 2 שאלה כללית

האם [math]\displaystyle{ A+B=\empty }[/math] כאשר [math]\displaystyle{ A=\empty }[/math]?


תשובה: כן. --איתמר שטיין 21:52, 5 בנובמבר 2012 (IST)

תרגיל 2, שאלה 4

1)אם השאלה שלי נכונה, האם מדובר במטריקות שמושרות על-ידי נורמות-p או שצריך להניח שמדובר בנורמה כללית? 2)הטענה נראית נכונה גם עבור מרחבים מטריים כלשהם, אם כן אז ההגבלה ל-R^k נראית מיותרת (זה שאלה/הערה) תודה


תשובה:

1) אני אגיד שוב, כשלא מצויינת מטריקה במפורש הכוונה למטריקה האוקלידית הסטנדרטית.

(כמובן היות וכל המטריקות [math]\displaystyle{ ||\quad||_p }[/math] שקולות אליה, שימוש בהן יביא תמיד לאותה תוצאה)

2) כן, הטענה נכונה לכל מרחב מטרי (אפילו לכל טופולוגיה), מי שרוצה להוכיח בצורה כללית יותר, רשאי (אני לא ראיתי צורך לסבך אתכם).

--איתמר שטיין 14:38, 11 בנובמבר 2012 (IST)

תרגיל 3, שאלה 5 (תהייה)

האם הנורמה האוקלידית היא יותר מאשר הרכבת פונקציות אלמנטריות? במידה שלא, האם יש לעשות יותר מאשר לצטט משפט זה כדי להצדיק את הטענה?

תשובה: האמת היא שאתה צודק. היא הרכבת אלמנטריות ולכן רציפה.

הכוונה היתה שתוכיחו עם [math]\displaystyle{ \epsilon,\delta }[/math] (וגם אז זאת שאלה די קלה).

אבל מה שהוגן הוגן, היות ומותר להסתמך על מה שראיתם בהרצאה/תרגול - מספיק להציג אותה כהרכבת אלמנטריות, לצטט את המשפט וזהו.--איתמר שטיין 12:02, 13 בנובמבר 2012 (IST)

תרגיל4, שאלה3(א)

זה לא נובע מרציפות רכיב רכיב? אם כן, אז יכול להיות שהשאלה היא להוכיח רציפות במידה שווה? תודה

תשובה: זה ממש לא נובע מרציפות רכיב רכיב - זה שני דברים שונים.

רציפות רכיב רכיב היא חלוקה לפי הרכיבים של הטווח עבור פונקציות שהטווח שלהן הוא [math]\displaystyle{ \mathbb{R}^m }[/math], כאן החלוקה היא עבור רכיבים של התחום וזה משהו אחר.

כל כך אחר, שהיום גילינו שהטענה בכלל לא נכונה - ואנחנו מורידים את השאלה הזאת מהתרגיל. אני מצטער על הטעות.--איתמר שטיין 23:46, 18 בנובמבר 2012 (IST)

תרגיל 4 שאלה 2

האם יכול להיות שישנה טעות בשאלה אני מבינה שהפונקציה חייבת להיות חיובית ולא שווה לאפס אבל ניתן לבחור X ן Y כרצוני כך שהפונקציה שלי תשאף ל-0. ולכן לא קיים M גדול ממש מ-0 שהפונקציה תהיה גדולה ממנו כי תמיד אני אוכל למצוא ערך של הפונקציה שקטן ממנו. ולא ניתן להוכיח זאת ע"י קומקפטיות כי הפונקציה אינה רציפה על ציר ה-X .


תשובה: בשאלה הזאת אין טעות. אולי זה יעזור אם אני אגיד שהפונקציה לא מוגדרת בכלל על ציר [math]\displaystyle{ x }[/math] לכן ממילא [math]\displaystyle{ E }[/math] לא כולל נקודות מציר [math]\displaystyle{ x }[/math]. (הרי נתון ש [math]\displaystyle{ f }[/math] מוגדרת על [math]\displaystyle{ E }[/math]). --איתמר שטיין 22:58, 19 בנובמבר 2012 (IST)

תרגיל 4, שאלה 2

האם מדובר ב-[math]\displaystyle{ \mathbb{R}^2 }[/math]?

תשובה: כן מדובר על [math]\displaystyle{ \mathbb{R}^2 }[/math] - זאת באמת טעות קטנה שכתבתי [math]\displaystyle{ \mathbb{R}^n }[/math]. (למרות שאם לומר את האמת, התשובה לא באמת משתנה אם זה על [math]\displaystyle{ \mathbb{R}^n }[/math]).--איתמר שטיין 22:59, 19 בנובמבר 2012 (IST)


אבל אז מה פירוש [math]\displaystyle{ \frac{x}{y} }[/math] ב[math]\displaystyle{ \mathbb{R}^n }[/math]?

תשובה: אין לו פירוש. הטווח של הפונקציה הוא [math]\displaystyle{ \mathbb{R} }[/math] - וזה כתוב בשאלה ובזה אין טעות. התחום יכול להיות [math]\displaystyle{ \mathbb{R}^n }[/math] או [math]\displaystyle{ \mathbb{R}^2 }[/math] וזה לא משנה ממש את התשובה. אפשר להניח שזה [math]\displaystyle{ \mathbb{R}^2 }[/math].--איתמר שטיין 23:28, 19 בנובמבר 2012 (IST)

תרגיל6, שאלה4

אני חושב שיש בעיה בניסוח השאלה: כתוב "משוואה" ואין כזאת.


תשובה: צודק. צריך להיות כתוב ביטוי. אני אתקן.--איתמר שטיין 15:42, 30 בנובמבר 2012 (IST)

תרגיל 7 שאלה 7 סעיף ב

הכוונה לחשב את הנגזרת החלקית של הפונקציה לפי איקס בחזקת שמונה ו-וואי בחזקת 11?

תשובה: צריך לחשב נגזרת חלקית כאשר גוזרים [math]\displaystyle{ 8 }[/math] פעמים לפי [math]\displaystyle{ x }[/math] ו [math]\displaystyle{ 11 }[/math] פעם לפי [math]\displaystyle{ y }[/math] (בסך הכל נגזרת מסדר [math]\displaystyle{ 19 }[/math])--איתמר שטיין 18:49, 10 בדצמבר 2012 (IST)

תרגיל 7

בשאלה 1 צריך למצוא דיפרנציאל מסדר 3 בנק (pi,0) או (pi/2,0) ?

תשובה: בנקודה [math]\displaystyle{ (0,\frac{\pi}{2}) }[/math]. זה שכתבתי [math]\displaystyle{ (0,\pi) }[/math] בדיפרנציאל זאת טעות, אני אתקן מייד.--איתמר שטיין 18:47, 10 בדצמבר 2012 (IST)

תרגיל 7 שאלה 4

האם ניתן למצוא את הטור עד סדר 5 של כל פונקציה לפי אינפי 1 ולהכפיל ללא פתיחת סוגריים, או שדרושה עבודה שחורה של מציאת כל הנגזרות המעורבות עד סדר 5, 20 במספר?

תודה.

תשובה: אני לא בטוח שאני מבין מה הכוונה ב: להכפיל ללא פתיחת סוגריים.

בשאלה הזאת אין צורך לחשב את כל הנגזרות החלקיות עד סדר [math]\displaystyle{ 5 }[/math], אפשר לפתור בדרך אחרת.--איתמר שטיין 18:53, 10 בדצמבר 2012 (IST)

תרגיל 9 שאלה 5 סעיף א

במשוואה [math]\displaystyle{ u^2+v^2+z^2=29 }[/math] לא צריך להחליף את ה-z ב-w. כלומר, [math]\displaystyle{ u^2+v^2+w^2=29 }[/math]?


תשובה: צודק, תוקן.--איתמר שטיין 13:00, 31 בדצמבר 2012 (IST)

תרגיל 9 שאלה 6

בסוף השאלה כתוב הנגזרת של z לפי x שווה ובמונה כתוב הנגזרת של f לפי z אבל זה צריך להיות x (נראה לי =])

תשובה: שוב אתם צודקים, שוב תוקן--איתמר שטיין 13:38, 1 בינואר 2013 (IST)

תרגיל 9 שאלה 6

נראה לי שצריך להיות נתון ש-[math]\displaystyle{ f,g,h }[/math] ממחלקה [math]\displaystyle{ C^1 }[/math].

תשובה: שוב אתם צודקים. לא יודע מה קרה לי עם התרגיל הזה... כל כך הרבה טעויות.--איתמר שטיין 15:51, 1 בינואר 2013 (IST)