שיחה:88-222 תשעג סמסטר ב נוביק: הבדלים בין גרסאות בדף
(←שאלות) |
|||
שורה 58: | שורה 58: | ||
== תרגיל 3 == | == תרגיל 3 == | ||
כשמדברים על קבוצות פתוחות וסגורות בR^n מהי המטריקה??,האוקילדית??,ועוד שאלה,האם מותר להשתמש בתכונות של פונקציות רציפות בR^n (שגם סכום,הרכבה,כפל וכו' רציף)? | כשמדברים על קבוצות פתוחות וסגורות בR^n מהי המטריקה??,האוקילדית??,ועוד שאלה,האם מותר להשתמש בתכונות של פונקציות רציפות בR^n (שגם סכום,הרכבה,כפל וכו' רציף)? | ||
::כן וכן.--[[משתמש:מני ש.|מני]] 12:06, 15 במרץ 2013 (IST) |
גרסה מ־10:06, 15 במרץ 2013
שאלות
שאלה בקשר לסעיף א' בשאלה 1
צ"ל שלכל A מוכל ב-Y מתקיים ([f(f^-1[A מוכל ב-A
איך מתחילים את ההוכחה?
מניחים שלכל A שמוכל ב-Y מתקיים:
y שייך ל- ([f(f^-1[A ומראים ש y שייך לA?
ההכלה נובעת מהגדרות אבל לא הבנתי איך מתייחסים לנתון שלכל A מוכל ב-Y.
תודה רבה!
- הטענה היא שההכלה מתקיימת לכל קבוצה A. לביטוי [math]\displaystyle{ f^{-1}[A] }[/math] יש משמעות רק כש A תת קבוצה של Y. אכן, צריך לקחת תת קבוצה שרירותית A של Y ובאמת להראות את ההכלה כפי שציינת ברמה של איברים. ההכלה נובעת מההגדרות אבל צריך להראות איך בדיוק. --מני 01:04, 28 בפברואר 2013 (IST)
שאלה 5
שאני מנסה להוכיח סימטריות אני תמיד מגיע למצב שבו אני מניח אי שליליות. אני אמור להניח זאת? אם לא אני לא מבין איך להוכיח את זה?
- (לא מתרגל) ניתן להוכיח חיובית, פשוט תצא מהעובדה שהמרחק בין איבר לעצמו הוא אפס.
- תודה
תרגיל 1 שאלה 4
האם הפונקציה כפי שהוגדרה בתרגיל: [math]\displaystyle{ d(x,y)= \begin{cases} 0 & x=y \\ \frac {1} {min \{j \in \mathbb {N}:x_j\ne y_j\}} & \ x \ne y \end{cases} }[/math]
שקולה לפונקציה: [math]\displaystyle{ d(i,j)= \begin{cases} 0 & i=j \\ \frac {1} {min \{i,j\}} & \ i \ne j \end{cases} }[/math]? האינדקסים ב-x וב-y קצת מבלבלים אותי.
- (לא מתרגל) לפי מה שאני מבין, לא. האינדקסים יכולים להיות שווים והפונקציה עדיין לא תתאפס-האיברים צריכים להיות שונים
- הבנתי את הטעות שלי (לא שמתי לב, שבשאלה הגדירו שכל איבר הוא בעצם סדרה). תודה.
תרגיל 2 שאלה 5
בסעיף א', האם
[math]\displaystyle{
\sigma_Y(y_1,y_2) = \sigma(y_1,y_2)
}[/math]
כאשר
[math]\displaystyle{
y_1,y_2 \in Y
}[/math]
??
או שהמטריקות יכולות להיות שונות לחלוטין?
- ההגדרה של תת מרחב מטרי ניתנה בהרצאה. --מני 12:24, 12 במרץ 2013 (IST)
תרגיל 3
כשמדברים על קבוצות פתוחות וסגורות בR^n מהי המטריקה??,האוקילדית??,ועוד שאלה,האם מותר להשתמש בתכונות של פונקציות רציפות בR^n (שגם סכום,הרכבה,כפל וכו' רציף)?
- כן וכן.--מני 12:06, 15 במרץ 2013 (IST)