שיחה:88-113 תשעג סמסטר ב: הבדלים בין גרסאות בדף

מתוך Math-Wiki
(←‏שילוש: פסקה חדשה)
שורה 117: שורה 117:
\right)</math>  
\right)</math>  
'''ומטריצת הזהות, הן לא יהיו דומות. עדי
'''ומטריצת הזהות, הן לא יהיו דומות. עדי
== שילוש ==
( הבסיס יכול להשפיע גם על מס' השלבים לבניית המשולשית, בעניין זה אמרתי בכיתה שמנסיון, לא מוכח, השלמה כמה שיותר אלמנטרית הזהה לו"ע שכבר מצאתם תזרז את התהליך. למשל אם יצא ו"ע:
2
0
1
אז אני הייתי משלימה ל-
0  0
0  1
1,  1
אבל כל השלמה, גם אם ביותר שלבים, תשלש)
Sent ItemsThursday, May 02, 2013 4:10 PMadi niv
Thursday, May 02, 2013 3:59 PMmoran m [moranman49@gmail.com]
ישבנו מס' תלמידים, ופתרנו את שאלה 1 בתרגיל.. כשכל אחד פתר בעצמו והגענו לתוצאות שונות.
האם כשבונים את המטריצה המשלשת , וחסרים לנו ווקטורים לבנייתה , עם אילו ווקטורים נשלים? האם אם הסטנדרטים או שצריך להשלים  למטריצה משולשית שמתחת לאלכסון  הכול 0 ומעליו הכול 1?
'''>>זה לא משנה לאיזה בסיס תשלימו, כמובן שהתוצאה, למעט על האלכסון, תהיה תלויה בבחירת הבסיס.
האם לכולם יצאה משולשית?
'''בכל מקרה, הבסיס יכול להשפיע גם על מס' השלבים לבניית המשולשית, בעניין זה אמרתי בכיתה שמנסיון, לא מוכח, השלמה כמה שיותר אלמנטרית הזהה לו"ע שכבר מצאתם תזרז את התהליך. למשל אם יצא ו"ע:
2
0
1
'''אז אני הייתי משלימה ל-
0  0
0  1
1,  1
'''אבל כל השלמה, גם אם ביותר שלבים, תשלש

גרסה מ־14:40, 2 במאי 2013


חזרה לדף הקורס


גלול לתחתית העמוד


הוספת שאלה חדשה

הוסף שאלה חדשה (רשום כותרת לשאלה, רשום את תוכן השאלה ולחץ על שמירה למטה מימין לסיום).

-עזרה על עיצוב הטקסט וכתיב מתמטי תוכלו למצוא כאן

אם אתם רוצים לשאול שאלה עליכם ליצור חשבון משתמש באתר.

שאלות

הגשת התרגילים

מכיוון שנעשו קיצוצים ועכשיו בודקים לנו רק שאלה מכל תרגיל; האם נקבל הודעה איזו שאלה נבדקת ונגיש רק אותה, או שצריך להגיש את התרגיל במלואו?

>> מגישים את התרגיל במלואו

תרגילים 2+3

ליד תרגיל 2 כתוב "רשות", ליד תרגיל 3 כתוב "לא להגשה". האם זה רלוונטי לשתי הקבוצות? מאחר ובתרגול לא נאמר לנו דבר על כן שתרגיל 2 לא חובה ותרגיל 3 כלל לא צריך להגיש. (נאמר שאת שניהם נגיש לאחר פסח). תודה וחג שמח.

>> זה מידע שגוי שנרשם ע"י גורם שנחסם כרגע, העניין טופל, התרגילים להגשה. עדי

תרגיל 2, שאלה 1ב

אני לא מצליח להבין מה מבקשים ממני בשאלה 1 סעיף ב', אם תוכלי לעזור לי לפרש את ההנחייה אודה לך מאוד

>>הצבת מטריצה A בפולינום אומרת:

בכל מקום שיש משתנה X נציב את A, ובמקום האיבר החופשי [math]\displaystyle{ a }[/math] של הפולינום נשים את המטריצה הסקלרית [math]\displaystyle{ aI }[/math]

(אחרת לא ניתן לחבר בין הגורמים)

עדי

ריבובים ולכסינות

האם זה שריבוב אלג' של כל ע"ע שווה לגיאומטרי, זה תנאי מספיק אבל לא הכרחי ללכסינות?

כלומר האם כדי להראות שמטריצה היא לא לכסינה מספיק להראות ע"ע שהריבוב האלג' שלו לא שווה לגיא' שלו?

>>ראשית, מעט לוגיקה:

מבחינת הגדרות:

מספיק ש-X כדי ש-Y אומר: X גורר Y, או: אם X אז Y.

X הכרחי כדי ש-Y אומר: (לא X) גורר (לא Y), או: אם (לא X) אז (לא Y) שזה שקול ל- Y גורר X.

כלומר, מספיק והכרחי זה "אם ורק אם", אך שים לב שאתה מתאר אותם בהתאם, מספיק זו הגרירה בכיוון הראשון, והכרחי בכיוון השני.

בשאלה הראשונה דרשת "מספיק" (X=>Y), אך בשאלה השניה תיארת "הכרח" (Y=>X) (שתואר ע"י "מספיק" של השלילות (לא X => לא Y)) ולכן ה"כלומר" בין השאלות וודאי אינו נכון.

X => Y אז (לא Y) => (לא X), ולא Y => X או (לא X)=>(לא Y)


חזרה ללינארית, אלו התנאים:

לכסינה => הפ"א מתפרק לגורמים לינארים+הריבובים של כל ע"ע שווים

הפ"א מתפרק לגורמים לינארים+הריבובים של כל ע"ע שווים => לכסינה

כלומר, שיוויון הריבובים הוא הכרחי ללכסינות אך לא מספיק (לכן התשובה לשאלה זו היא לא), צריך גם שהפולנום יהיה מל"ל. למשל [math]\displaystyle{ (x-2)(x^2+1) }[/math] מעל הממשיים. הע"ע היחיד הוא 2 עם ר"א 1 ויתכן כי גם הריבוי הגיאומטרי יהיה 1. אבל הפ"א איננו מל"ל, ולכן המט' אינה לכסינה.

מל"ל כי: נצטרך n ע"ע (כולל ריבויים) ע"מ לקבל מטריצה אלכסונית D, מאותו גודל ודומה למקורית. שיוויון הריבויים כי: נרצה שיהיו n ו"ע, ע"מ שיהיה בסיס ו"ע לבניית המטריצה ההפיכה המלכסנת P.

לכן כדי להראות שמטריצה היא לא לכסינה אכן מספיק להראות ע"ע שהריבוב האלג' שלו לא שווה לגיא' שלו (לכן התשובה לשאלה זו היא כן):

X => Y אז (לא Y) => (לא X). או במקרה שלנו: "לכסינות מספיקה בשביל שוייון ריבויים" ששקול ל- "שיוויון ריבויים הכרחי ללכסינות" ששקול ל- "אי שיוויון ריבויים מספיק בשביל אי לכסינות"


עדי

תרגיל 3 שאלה 1.12

נראה כי השקילות טריוויאלית. הרי בעיקרון מה שיש להוכיח, בהינתן הגדרת ערך עצמי של מטריצה, הוא שערך עצמי של העתקה לינארית מוגדר היטב; כלומר, שכל מטריצה מייצגת שנבחר תיתן לנו את אותם הערכים העצמיים. אבל כאשר הה"ל מוגדרת באמצעות מטריצה מייצגת מסוימת, השקילות ברורה מתוך הגדרה, לא?...

>>השאלה יחסית טריויאלית, לכן שים דגש על פורמליות ההגדרות עבור ה"ל ועבור מטריצות, והראה את המעבר ביניהם ע"ס נתוני השאלה. עדי

פולינום מינימלי

רציתי לשאול בבקשה בקשר לשיעורי בית שיש שם מריצה 5*5 . אז הפולינום האופייני שיצא לי הוא 2^(x-3)^2*(x-1)* (x-2) עבור עע 1 הריבוי 1 עבור עע 2 ו3 הריבוי 2 . אז השאלה שלי נניח המטריצה לכסינה אז הפולינום המינימלי הינו המכפלה לעיל רק שכולם בדרגה אחת ( למדנו בתרגול ) .

כעת אם המטריצה אינה לכסינה - אז בהכרח הפולינום המינילי שווה לפולינום האופייני? האם יש משפט כזה ? או שעלי לבדוק את 2 האופציות הנוספות לפולינום מינימלי שבהן רק ע״ע 2 בריבוי 2 ופעם אחרת שרק ע״ע 3 בריבוי 2 ולבדוק שבהצבת המטריצה נקבל אפס באחד מהם . תודה

>>אם היא לכסינה אז אוטומטית המעלות יורדות ל-1, אם לא יש לבדוק את כל האופציות החל מהמעלה הנמוכה ביותר. עדי

דמיון מטריצות

אם למטריצות יש פולינום אופייני זהה/דטרמיננטה שווה/עקבה שווה זו הוכחה מספקת לדימיון?

או שהדרך היחידה להוכחה היא למצוא P שמקיימת:

A=P^-1 B P

>>אין זה מעיד על דמיון. מה עם מטריצות בעלות פ"א זהה, האחת לכסינה והשניה לא? למשל

[math]\displaystyle{ \left( \begin{array}{cc} 1 & 1\\ 0 & 1 \end{array} \right) }[/math] ומטריצת הזהות, הן לא יהיו דומות. עדי

שילוש

( הבסיס יכול להשפיע גם על מס' השלבים לבניית המשולשית, בעניין זה אמרתי בכיתה שמנסיון, לא מוכח, השלמה כמה שיותר אלמנטרית הזהה לו"ע שכבר מצאתם תזרז את התהליך. למשל אם יצא ו"ע: 2 0 1 אז אני הייתי משלימה ל- 0 0 0 1 1, 1

אבל כל השלמה, גם אם ביותר שלבים, תשלש)


Sent ItemsThursday, May 02, 2013 4:10 PMadi niv



Thursday, May 02, 2013 3:59 PMmoran m [moranman49@gmail.com]

ישבנו מס' תלמידים, ופתרנו את שאלה 1 בתרגיל.. כשכל אחד פתר בעצמו והגענו לתוצאות שונות. האם כשבונים את המטריצה המשלשת , וחסרים לנו ווקטורים לבנייתה , עם אילו ווקטורים נשלים? האם אם הסטנדרטים או שצריך להשלים למטריצה משולשית שמתחת לאלכסון הכול 0 ומעליו הכול 1?

>>זה לא משנה לאיזה בסיס תשלימו, כמובן שהתוצאה, למעט על האלכסון, תהיה תלויה בבחירת הבסיס. האם לכולם יצאה משולשית?

בכל מקרה, הבסיס יכול להשפיע גם על מס' השלבים לבניית המשולשית, בעניין זה אמרתי בכיתה שמנסיון, לא מוכח, השלמה כמה שיותר אלמנטרית הזהה לו"ע שכבר מצאתם תזרז את התהליך. למשל אם יצא ו"ע:

2

0

1

אז אני הייתי משלימה ל-

0 0

0 1

1, 1

אבל כל השלמה, גם אם ביותר שלבים, תשלש