משתמש:איתמר שטיין: הבדלים בין גרסאות בדף

מתוך Math-Wiki
אין תקציר עריכה
שורה 7: שורה 7:
===פתרון הבוחן===
===פתרון הבוחן===


===שאלה 3===
====סעיף ב====
 
====סעיף א====
 
הוכחה: יהי <math>\alpha_1 (v_1+v_2) + \alpha_2(v_2+v_3) +\alpha_3 (v_1+v_3) = 0</math> צירוף לינארי מתאפס כלשהוא של הוקטורים שבשאלה.
 
צריך להוכיח ש <math>\alpha_1=\alpha_2=\alpha_3=0</math>.
 
קל לראות שהצירוף הלינארי שווה ל
 
<math>(\alpha_1+\alpha_3) v_1 +(\alpha_1+\alpha_2)v_2+(\alpha_2+\alpha_3)v_3  = 0</math>
 
היות ו <math>v_1,v_2,v_3</math> בת"ל. נקבל ש
 
<math>\alpha_1+\alpha_3=\alpha_1+\alpha_2=\alpha_2+\alpha_3=0</math>
 
זה נותן לנו מערכת משוואות פשוטה.
 
קל להסיק ממנה ש
 
<math>\alpha_1=-\alpha_2,\quad \alpha_1=-\alpha_3</math>
 
אבל בגלל ש <math>\alpha_2+\alpha_3=0</math>
 
נקבל ש <math>-2\alpha_1=0</math>
 
בגלל שהמאפיין שונה מ <math>2</math> אפשר לחלק ב <math>2</math> ולקבל
 
<math>-\alpha_1=0</math> כלומר <math>\alpha_1=0</math>
 
ומכאן ברור גם <math>\alpha_2=\alpha_3=0</math>.

גרסה מ־06:43, 16 באוגוסט 2013

לפעמים אני מתיימר לטעון שאני דוקטורנט למתמטיקה.


לפעמים אני טוען שאני לומד הצגות של אגודות. (ההוכחה בנפנופי ידיים)


פתרון הבוחן

סעיף ב