כלל לופיטל: הבדלים בין גרסאות בדף
אין תקציר עריכה |
|||
שורה 1: | שורה 1: | ||
= | =כלל לופיטל= | ||
תהיינה שתי פונקציות f,g. ותהי נקודה <math>x_0\in\mathbb{R}</math> או <math>x_0=\pm\infty</math> כך ש | תהיינה שתי פונקציות f,g. ותהי נקודה <math>x_0\in\mathbb{R}</math> או <math>x_0=\pm\infty</math> כך ש | ||
שורה 94: | שורה 81: | ||
== מקרה שלישי <math>0^0</math> או <math>1^\infty</math> או <math>\infty^0</math>== | == מקרה שלישי <math>0^0</math> או <math>1^\infty</math> או <math>\infty^0</math>== | ||
במקרה זה עלינו לחשב את הגבול <math>\lim_{x\rightarrow x_0}f^g</math>. | |||
כאשר <math>L=M=0</math> '''או''' <math>L=1,M=\infty</math> '''או''' <math>L=\infty, M=0</math>. | |||
בכל אחד מהמקרים נשתמש בדרך הבאה- | |||
ראשית נבחין כי <math>f^g = e^{ln(f^g)} = e^{gln(f)}</math>, | |||
שנית, נחשב את הגבול <math>K=\lim_{x\rightarrow x_0}gln(f)</math>. | |||
לבסוף, קיבלנו כי מתקיים | |||
:<math>\lim_{x\rightarrow x_0}f^g=e^K</math> | |||
===דוגמא 6=== | |||
=משפט לופיטל והוכחתו= | |||
נניח כי <math>\lim_{x\to a^+}f(x)=\lim_{x\to a^+}g(x)=0</math> ונניח עוד כי <math>f,g</math> גזירות בסביבה ימנית של a ומתקיים <math>\lim_{x\to a^+}=\frac{f'(x)}{g'(x)}=L</math> אז מתקיים <math>\lim_{x\to a^+}=\frac{f(x)}{g(x)}=L</math> | |||
==הוכחה== | |||
נוכל לבנות <math>\tilde{f},\tilde{g} </math> רציפות שמקיימות <math> \tilde{f}=\begin{cases} | |||
f\left(x\right) & x\neq a\\ | |||
0 & x=a | |||
\end{cases} \tilde{g}=\begin{cases} | |||
g\left(x\right) & x\neq a\\ | |||
0 & x=a | |||
\end{cases} </math> | |||
הגבול של מנתם בa יהיה זהה לגבול המקורי כי הוא נבדל ממנו רק בנקודה 1 לשם נוחות נמשיך לקרוא להם .f,g על פי משפט ערך הביניים של קושי עבור כל x בסביבה הימנית של a שבה f,g מוגדרות נוכל לבחור <math>a<c(x)<x</math> שמקיימת <math>\frac{f(x)}{g(x)}=\frac{f(x)-f(a)}{g(x)-g(a)}=\frac{f'(c(x))}{g'(c(x))} </math> | |||
ולכן נקבל <math>\lim_{x\to a^{+}}\frac{f(x)}{g(x)}=\lim_{x\to a^{+}}\frac{f'(c(x))}{g'(c(x))}=\lim_{c\to a^{+}}\frac{f'(c)}{g'(c)} </math> | |||
כרצוי השיוויון האחרון נובע מכך ש <math>a<c(x)<x</math> וממשפט הסנדויץ | |||
[[קטגוריה:אינפי]] | [[קטגוריה:אינפי]] |
גרסה מ־17:55, 22 בפברואר 2014
כלל לופיטל
תהיינה שתי פונקציות f,g. ותהי נקודה [math]\displaystyle{ x_0\in\mathbb{R} }[/math] או [math]\displaystyle{ x_0=\pm\infty }[/math] כך ש
- [math]\displaystyle{ \lim_{x\rightarrow x_0}f(x)=L }[/math]
- [math]\displaystyle{ \lim_{x\rightarrow x_0}g(x)=M }[/math]
נראה כיצד ניתן להעזר בכלל לופיטל על מנת לחשב גבולות במקרים בהם משפטי האריתמטיקה הרגילים נכשלים.
מקרה ראשון [math]\displaystyle{ \frac{0}{0} }[/math] או [math]\displaystyle{ \frac{\infty}{\infty} }[/math]
נניח [math]\displaystyle{ M=L=0 }[/math] או [math]\displaystyle{ M=L=\pm\infty }[/math]
אזי אם הגבול [math]\displaystyle{ \lim_{x\rightarrow x_0}\frac{f'}{g'} }[/math] קיים, הוא שווה לגבול [math]\displaystyle{ \lim_{x\rightarrow x_0}\frac{f}{g} }[/math]
דוגמא 1
חשבו את הגבול [math]\displaystyle{ \lim_{x\rightarrow \infty} \frac{ln(x)}{x} }[/math].
זהו מקרה של [math]\displaystyle{ \frac{\infty}{\infty} }[/math]. נגזור את המונה והמכנה בנפרד ונקבל
- [math]\displaystyle{ \lim_{x\rightarrow \infty} \frac{ln(x)}{x} = \lim_{x\rightarrow \infty} \frac{\frac{1}{x}}{1} = \lim_{x\rightarrow \infty} \frac{1}{x} = 0 }[/math]
דוגמא 2
חשבו את הגבול [math]\displaystyle{ \lim_{x\rightarrow 0} \frac{ln(1+x)}{x} }[/math].
זהו מקרה של [math]\displaystyle{ \frac{0}{0} }[/math]. נגזור את המונה והמכנה בנפרד ונקבל
- [math]\displaystyle{ \lim_{x\rightarrow 0} \frac{ln(1+x)}{x} = \lim_{x\rightarrow 0} \frac{\frac{1}{1+x}}{1}=1 }[/math]
דוגמא 3
חשבו את הגבול [math]\displaystyle{ \lim_{x\rightarrow \frac{\pi}{2}} \frac{cos(x)}{x-\frac{\pi}{2}} }[/math].
זהו מקרה של [math]\displaystyle{ \frac{0}{0} }[/math]. נגזור את המונה והמכנה בנפרד ונקבל
- [math]\displaystyle{ \lim_{x\rightarrow \frac{\pi}{2}} \frac{cos(x)}{x-\frac{\pi}{2}}=\lim_{x\rightarrow \frac{\pi}{2}} \frac{-sin(x)}{1}=-1 }[/math]
מקרה שני [math]\displaystyle{ 0\cdot \infty }[/math]
נניח [math]\displaystyle{ L=0 }[/math], [math]\displaystyle{ M=\infty }[/math] ועלינו לחשב את הגבול [math]\displaystyle{ \lim_{x\rightarrow x_0}f\cdot g }[/math].
במקרה זה, אנו מעבירים את הביטוי לצורה של שבר מהמקרה הראשון.
דוגמא 4
חשבו את הגבול [math]\displaystyle{ \lim_{x\rightarrow 0}xln(x) }[/math].
זהו מקרה של [math]\displaystyle{ -\infty\cdot 0 }[/math]. נעביר את הביטוי לצורה של שבר (באמצעות כלל האוזן), ונפעיל את כלל לופיטל:
- [math]\displaystyle{ \lim_{x\rightarrow 0}xln(x) = \lim_{x\rightarrow 0}\frac{ln(x)}{\frac{1}{x}}= }[/math]
נגזור מונה ומכנה ונקבל
- [math]\displaystyle{ = \lim_{x\rightarrow 0}\frac{\frac{1}{x}}{-\frac{1}{x^2}}=\lim_{x\rightarrow 0}-x = 0 }[/math]
שימו לב: כלל לופיטל לא מוכרח להצליח. למשל במקרה זה, אם היינו מעבירים את הלוגריתם למכנה בתרגיל זה ומפעילים כלל לופיטל, לא היינו מתקדמים. נסו ותהנו.
דוגמא 5
חשבו את הגבול [math]\displaystyle{ \lim_{x\rightarrow \infty}e^xsin\big(\frac{1}{x}\big) }[/math].
זהו מקרה של [math]\displaystyle{ \infty\cdot 0 }[/math]. נעביר את הביטוי לצורה של שבר, ונפעיל את כלל לופיטל:
- [math]\displaystyle{ \lim_{x\rightarrow \infty}e^xsin\big(\frac{1}{x}\big) = \lim_{x\rightarrow \infty}\frac{sin\big(\frac{1}{x}\big)}{e^{-x}}= }[/math]
נגזור מונה ומכנה ונקבל
[math]\displaystyle{ = \lim_{x\rightarrow \infty}\frac{\frac{-1}{x^2}cos\big(\frac{1}{x}\big)}{-e^{-x}}. }[/math]
כעת, אין אנו רוצים לגזור ביטויים מסובכים. אנו יודעים כי [math]\displaystyle{ \lim_{x\rightarrow \infty}cos\big(\frac{1}{x}\big)=1 }[/math], לכן נותר רק לחשב את הגבול
- [math]\displaystyle{ \lim_{x\rightarrow \infty}\frac{e^x}{x^2} }[/math]
זהו מקרה של [math]\displaystyle{ \frac{\infty}{\infty} }[/math], לכן נפעיל כלל לופיטל (פעמיים):
- [math]\displaystyle{ \lim_{x\rightarrow \infty}\frac{e^x}{x^2}= \lim_{x\rightarrow \infty}\frac{e^x}{2x}=\lim_{x\rightarrow \infty}\frac{e^x}{2}=\infty }[/math]
אם נחבר את כל התוצאות יחדיו, נקבל כי
- [math]\displaystyle{ \lim_{x\rightarrow \infty}e^xsin\big(\frac{1}{x}\big)=\infty }[/math]
מקרה שלישי [math]\displaystyle{ 0^0 }[/math] או [math]\displaystyle{ 1^\infty }[/math] או [math]\displaystyle{ \infty^0 }[/math]
במקרה זה עלינו לחשב את הגבול [math]\displaystyle{ \lim_{x\rightarrow x_0}f^g }[/math].
כאשר [math]\displaystyle{ L=M=0 }[/math] או [math]\displaystyle{ L=1,M=\infty }[/math] או [math]\displaystyle{ L=\infty, M=0 }[/math].
בכל אחד מהמקרים נשתמש בדרך הבאה-
ראשית נבחין כי [math]\displaystyle{ f^g = e^{ln(f^g)} = e^{gln(f)} }[/math],
שנית, נחשב את הגבול [math]\displaystyle{ K=\lim_{x\rightarrow x_0}gln(f) }[/math].
לבסוף, קיבלנו כי מתקיים
- [math]\displaystyle{ \lim_{x\rightarrow x_0}f^g=e^K }[/math]
דוגמא 6
משפט לופיטל והוכחתו
נניח כי [math]\displaystyle{ \lim_{x\to a^+}f(x)=\lim_{x\to a^+}g(x)=0 }[/math] ונניח עוד כי [math]\displaystyle{ f,g }[/math] גזירות בסביבה ימנית של a ומתקיים [math]\displaystyle{ \lim_{x\to a^+}=\frac{f'(x)}{g'(x)}=L }[/math] אז מתקיים [math]\displaystyle{ \lim_{x\to a^+}=\frac{f(x)}{g(x)}=L }[/math]
הוכחה
נוכל לבנות [math]\displaystyle{ \tilde{f},\tilde{g} }[/math] רציפות שמקיימות [math]\displaystyle{ \tilde{f}=\begin{cases} f\left(x\right) & x\neq a\\ 0 & x=a \end{cases} \tilde{g}=\begin{cases} g\left(x\right) & x\neq a\\ 0 & x=a \end{cases} }[/math] הגבול של מנתם בa יהיה זהה לגבול המקורי כי הוא נבדל ממנו רק בנקודה 1 לשם נוחות נמשיך לקרוא להם .f,g על פי משפט ערך הביניים של קושי עבור כל x בסביבה הימנית של a שבה f,g מוגדרות נוכל לבחור [math]\displaystyle{ a\lt c(x)\lt x }[/math] שמקיימת [math]\displaystyle{ \frac{f(x)}{g(x)}=\frac{f(x)-f(a)}{g(x)-g(a)}=\frac{f'(c(x))}{g'(c(x))} }[/math] ולכן נקבל [math]\displaystyle{ \lim_{x\to a^{+}}\frac{f(x)}{g(x)}=\lim_{x\to a^{+}}\frac{f'(c(x))}{g'(c(x))}=\lim_{c\to a^{+}}\frac{f'(c)}{g'(c)} }[/math] כרצוי השיוויון האחרון נובע מכך ש [math]\displaystyle{ a\lt c(x)\lt x }[/math] וממשפט הסנדויץ