שיחה:88-113 תשעד סמסטר ב: הבדלים בין גרסאות בדף
(←ש.ב 5 תרגיל 5.5: פסקה חדשה) |
|||
שורה 29: | שורה 29: | ||
מה הכוונה לאלגוריתם למציאת פולינום מינימלי , שהוא לא ע"י פולינום אופייני ? | מה הכוונה לאלגוריתם למציאת פולינום מינימלי , שהוא לא ע"י פולינום אופייני ? | ||
'''ז"א לא למצוא פ"א ואז להציב בכל האפשרויות מדרגות נמוכות יותר, אלא להשתמש באלגוריתם שנתו בכיתה. | |||
'''I-דרגת הפ"מ היא לכל היותר <math>n</math> לכן <math>M_A(x)=\sum_{i=0}^n a_ix^i</math> | |||
'''II-נציב את A בפוליום זה, לפי ק-ה: <math>M_A(A)=\sum_{i=0}^n a_iA^i=0</math> | |||
'''מכיוון שיש <math>n^2</math> רכיבים ב-A זה יוצר מערכת משוואות מעל <math>n+1</math> משתנים: <math>a_0,...,a_n</math>. | |||
'''III-מתוך אוסף הפיתרונות נבחר את זה שמייצג פולינום מתוקן מהמעלה הנמוכה ביותר. | |||
'''למשל: המטריצה <math>A=2I</math> מגודל <math>2\times 2</math>. ברור שהפ"א הוא <math>(x-2)^2</math> ושהיות והיא לכסינה הפ"מ הוא <math>(x-2)</math>. אבל היות וביקשו לפתור זאת לפי האלגוריתם נאמר ש- <math>M_A(x)=ax^2+bx+c</math>, לכן <math>M_A(A)=a\cdot 4I+b\cdot 2I+cI</math> וכתוצאה מכך: <math>c=-4a-2b<=4a+2b+c=0</math>, הפולינום יהיה ממעלה מינימלית כאשר <math>a=0</math> ומתוקן כאשר <math>b=1</math>, ז"א: <math>c=-2</math>. ולכן <math>M_A(x)=x-2</math>/ | |||
'''עדי |
גרסה מ־06:36, 4 במאי 2014
הוספת שאלה חדשה
הוסף שאלה חדשה (רשום כותרת לשאלה, רשום את תוכן השאלה ולחץ על שמירה למטה מימין לסיום).
-עזרה על עיצוב הטקסט וכתיב מתמטי תוכלו למצוא כאן
אם אתם רוצים לשאול שאלה עליכם ליצור חשבון משתמש באתר.
שאלות
תרגיל 1 שאלה 1.29 עמוד 55- חוברת של צבאן
האם על רעיון ההוכחה של התרגיל דיברנו בשיעור היום?
מז"א רעיון ההוכחה של התרגיל? למדנו את כל מה שצריך ע"מ לפתור אותו.
תזכורת: פונקציה [math]\displaystyle{ f:A\rightarrow B }[/math] נקראת פונקציית האפס אם [math]\displaystyle{ f(x)=0 \ \forall x\in A }[/math].
במקרה של ה"ל: בשביל שה"ל [math]\displaystyle{ \ T:V\rightarrow W }[/math] תקרא העתקת האפס מספיק לדרוש [math]\displaystyle{ \ T(v)=0 \ \forall v\in B }[/math] כאשר B בסיס כלשהו ל-V (למה?).
עדי
שאלה 2.7
בתשובה הציגו את סכום הישר על ידי העתקה הלינארית, ווקטורים בv. אולם לא הבנתי כיצד הגיעו להצגה זאת. תודה רבה
בגלל שנתון [math]\displaystyle{ T=T^2 }[/math], הרי ש-[math]\displaystyle{ \ T(v)=T^2(v),\ \ \forall v\ }[/math] ולכן
[math]\displaystyle{ 0=T(v)-T^2(v)=T(v-T(v)) }[/math].
כלומר [math]\displaystyle{ v-T(v) }[/math] בגרעין. נשלים אותו להיות [math]\displaystyle{ v }[/math] ונוכיח שההשלמה בתמונה. עדי
ש.ב 5 תרגיל 5.5
מה הכוונה לאלגוריתם למציאת פולינום מינימלי , שהוא לא ע"י פולינום אופייני ?
ז"א לא למצוא פ"א ואז להציב בכל האפשרויות מדרגות נמוכות יותר, אלא להשתמש באלגוריתם שנתו בכיתה.
I-דרגת הפ"מ היא לכל היותר [math]\displaystyle{ n }[/math] לכן [math]\displaystyle{ M_A(x)=\sum_{i=0}^n a_ix^i }[/math]
II-נציב את A בפוליום זה, לפי ק-ה: [math]\displaystyle{ M_A(A)=\sum_{i=0}^n a_iA^i=0 }[/math]
מכיוון שיש [math]\displaystyle{ n^2 }[/math] רכיבים ב-A זה יוצר מערכת משוואות מעל [math]\displaystyle{ n+1 }[/math] משתנים: [math]\displaystyle{ a_0,...,a_n }[/math].
III-מתוך אוסף הפיתרונות נבחר את זה שמייצג פולינום מתוקן מהמעלה הנמוכה ביותר.
למשל: המטריצה [math]\displaystyle{ A=2I }[/math] מגודל [math]\displaystyle{ 2\times 2 }[/math]. ברור שהפ"א הוא [math]\displaystyle{ (x-2)^2 }[/math] ושהיות והיא לכסינה הפ"מ הוא [math]\displaystyle{ (x-2) }[/math]. אבל היות וביקשו לפתור זאת לפי האלגוריתם נאמר ש- [math]\displaystyle{ M_A(x)=ax^2+bx+c }[/math], לכן [math]\displaystyle{ M_A(A)=a\cdot 4I+b\cdot 2I+cI }[/math] וכתוצאה מכך: [math]\displaystyle{ c=-4a-2b\lt =4a+2b+c=0 }[/math], הפולינום יהיה ממעלה מינימלית כאשר [math]\displaystyle{ a=0 }[/math] ומתוקן כאשר [math]\displaystyle{ b=1 }[/math], ז"א: [math]\displaystyle{ c=-2 }[/math]. ולכן [math]\displaystyle{ M_A(x)=x-2 }[/math]/
עדי