88-195 בדידה לתיכוניסטים תשעא/מערך שיעור/שיעור 1.5: הבדלים בין גרסאות בדף
אחיה בר-און (שיחה | תרומות) (יצירת דף עם התוכן "'''חזרה למערכי התרגול'''") |
אחיה בר-און (שיחה | תרומות) אין תקציר עריכה |
||
שורה 1: | שורה 1: | ||
'''[[מתמטיקה בדידה - מערך תרגול|חזרה למערכי התרגול]]''' | '''[[מתמטיקה בדידה - מערך תרגול|חזרה למערכי התרגול]]''' | ||
=רעיון בסיסי - אינדוקציה על הטבעיים= | |||
בשביל להוכיח שטענה מסוימת <math>P(n)</math> נכונה עבור כל מספר טבעי | |||
(למשל <math>(1+2+\cdots +n)^2 =1^3 +2^3 + \cdots +n^3</math>) מספיק להוכיח את הבאים: | |||
* הטענה מתקיימת עבור <math>n=1</math> כלומר <math>P(1)</math> מתקיים | |||
* '''אם''' הטענה נכונה עבור מספר טבעי מסוים אזי היא נכונה גם עבור המספר הבא אחריו. כלומר <math>P(n)\Rightarrow P(n+1)</math>. | |||
למה זה מספיק? | |||
בוא נחשוב.. הוכחנו באופן ישיר כי הטענה נכונה עבור <math>n=1</math> כלומר <math>P(1)</math> מתקיים. לכן לפי הטענה השניה, אם הטענה נכונה עבור <math>n=1</math> (שזה אכן כך) אז הטענה נכונה גם עבור <math>n=2</math>כלומר <math>P(2)</math>. אה! אז עכשיו זה נכון עבור <math>n=2</math> אז לפי אותה טענה זה נכון גם עבור <math>n=3</math>! ומה עכשיו? אם זה נכון עבור <math>n=3</math> זה נכון עבור <math>n=4</math> . אפשר להשתכנע שבאמת |
גרסה מ־08:10, 17 ביולי 2014
רעיון בסיסי - אינדוקציה על הטבעיים
בשביל להוכיח שטענה מסוימת [math]\displaystyle{ P(n) }[/math] נכונה עבור כל מספר טבעי (למשל [math]\displaystyle{ (1+2+\cdots +n)^2 =1^3 +2^3 + \cdots +n^3 }[/math]) מספיק להוכיח את הבאים:
- הטענה מתקיימת עבור [math]\displaystyle{ n=1 }[/math] כלומר [math]\displaystyle{ P(1) }[/math] מתקיים
- אם הטענה נכונה עבור מספר טבעי מסוים אזי היא נכונה גם עבור המספר הבא אחריו. כלומר [math]\displaystyle{ P(n)\Rightarrow P(n+1) }[/math].
למה זה מספיק? בוא נחשוב.. הוכחנו באופן ישיר כי הטענה נכונה עבור [math]\displaystyle{ n=1 }[/math] כלומר [math]\displaystyle{ P(1) }[/math] מתקיים. לכן לפי הטענה השניה, אם הטענה נכונה עבור [math]\displaystyle{ n=1 }[/math] (שזה אכן כך) אז הטענה נכונה גם עבור [math]\displaystyle{ n=2 }[/math]כלומר [math]\displaystyle{ P(2) }[/math]. אה! אז עכשיו זה נכון עבור [math]\displaystyle{ n=2 }[/math] אז לפי אותה טענה זה נכון גם עבור [math]\displaystyle{ n=3 }[/math]! ומה עכשיו? אם זה נכון עבור [math]\displaystyle{ n=3 }[/math] זה נכון עבור [math]\displaystyle{ n=4 }[/math] . אפשר להשתכנע שבאמת