לינארית 1 לתיכוניסטים תש"ע - שאלות ותשובות: הבדלים בין גרסאות בדף

מתוך Math-Wiki
שורה 27: שורה 27:


\end{bmatrix}
\end{bmatrix}
</math>
</math>, <math> A_2 =
 
<math> A_2 =
\begin{bmatrix}
\begin{bmatrix}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
שורה 38: שורה 36:


\end{bmatrix}
\end{bmatrix}
</math>
</math>, <math>A_3=
\begin{bmatrix}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\


<math>A_3=
\end{bmatrix}
</math>, <math>A_4=
\begin{bmatrix}
\begin{bmatrix}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
שורה 49: שורה 54:


\end{bmatrix}
\end{bmatrix}
</math>
</math>,
 
<math>A_5=0</math>


וכדומה.
וכדומה.

גרסה מ־21:05, 3 באוגוסט 2010

[math]\displaystyle{ \dim W+U= \dim W + \dim U - \dim W\cap U }[/math]

הוראות

כאן המקום לשאול שאלות. כל שעליכם לעשות הוא ללחוץ על [עריכה] (משמאל לכותרת "שאלות"), להוסיף בתחילת הדף את השורה הבאה:

== כותרת לשאלה ==

לכתוב מתחתיה את שאלתכם, וללחוץ על שמירה למטה מימין

הודעה חשובה !!! - יש להגיש את התרגילים הנוספים (13 , ו 14 כרשות למי שמגיש ) עד ,וכולל , 16.9.2010 ! למשל לתא הבודקת הילה הלוי בכר , או לתומר ביום רביעי או לניר ביום חמישי - בתרגולי החזרה . אנא הודיעו למי שאתם יודעים שלא יגיע לתרגולים אלו . תודה:)

ארכיון

ארכיון 1 - תרגיל 1

שאלות

שאלה

לגבי שאלה 5.3לא הבנתי איך אני אמורה לפתור אותו לפי סעיף ההאחרון ומעלה או שכל סעיף בנפרד ? 5.16 איך בכלל נראת המטריצה ? מטריצת יחידה או מטריצה שהיא כמו מטריצה יחידה ויש שורת אפסים? איך אני צריכה לגשת לזה?

תשובה

5.3 כל סעיף בנפרד

5.16 אני אנסה להבהיר על ידי דוגמא. נניח n=5 אזי:


[math]\displaystyle{ A_1 = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ \end{bmatrix} }[/math], [math]\displaystyle{ A_2 = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \end{bmatrix} }[/math], [math]\displaystyle{ A_3= \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \end{bmatrix} }[/math], [math]\displaystyle{ A_4= \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \end{bmatrix} }[/math],

[math]\displaystyle{ A_5=0 }[/math]

וכדומה.