88-195 בדידה לתיכוניסטים תשעא/מערך שיעור/שיעור 11: הבדלים בין גרסאות בדף

מתוך Math-Wiki
שורה 10: שורה 10:


דוגמא: <math>V=\{1,2,3\}, E=\Big\{\{1,2\},\{2,3\},\{1,3\}\Big\}</math>  מייצג משולש.
דוגמא: <math>V=\{1,2,3\}, E=\Big\{\{1,2\},\{2,3\},\{1,3\}\Big\}</math>  מייצג משולש.


'''הגדרה''' הסדר של גרף <math>G=(V,E)</math> הוא <math>|V|</math>. גרף יקרא סופי אם הסדר שלו סופי (וגם <math>E</math> סופית)
'''הגדרה''' הסדר של גרף <math>G=(V,E)</math> הוא <math>|V|</math>. גרף יקרא סופי אם הסדר שלו סופי (וגם <math>E</math> סופית)


אנחנו נעסוק בגרפים לא מכוונים בלי לולאות כלומר המקיימים <math>\forall v\in V : \{v,v\}\not\in E</math>
אנחנו נעסוק בגרפים לא מכוונים בלי לולאות כלומר המקיימים <math>\forall v\in V : \{v,v\}\not\in E</math>


'''הגדרה''' יהיה <math>G=(V,E)</math>  נאמר כי <math>v,w\in V</math> שכנים אם <math>\{v,w\}\in E</math>.
'''הגדרה''' יהיה <math>G=(V,E)</math>  נאמר כי <math>v,w\in V</math> שכנים אם <math>\{v,w\}\in E</math>.


במקרה זה נאמר כי הצלע <math>\{v,w\}\in E</math> חלה ב <math>w</math> (או חלה ב <math>v</math>)
במקרה זה נאמר כי הצלע <math>\{v,w\}\in E</math> חלה ב <math>w</math> (או חלה ב <math>v</math>)
את קבוצת השכנים של <math>u</math> מסמנים כ <math>\Gamma(u)=\{v\in V \: :\; \{v,u\}\in E\}</math>
הדרגה של <math>u</math> היא מספר הצלעות החלות ב <math>u</math> או לחילופין <math>|\Gamma(u)|</math>

גרסה מ־08:29, 14 באוגוסט 2014

חזרה למערכי התרגול

הגדרות בסיסיות

הגדרה יהיה [math]\displaystyle{ V }[/math] קבוצה לא ריקה. יהא [math]\displaystyle{ E }[/math] קבוצה המכילה זוגות לא סדורים מאיברי [math]\displaystyle{ V }[/math] אזי [math]\displaystyle{ G=(V,E) }[/math] נקרא גרף לא מכוון.

חושבים על [math]\displaystyle{ V }[/math] כקודקודים של הגרף ועל [math]\displaystyle{ E }[/math] כקשתות/צלעות של הגרף. את האיברים ב [math]\displaystyle{ E }[/math] נהוג לרשום כקבוצה [math]\displaystyle{ \{v,w\}\in E }[/math] (בגלל שזה זוגות לא סדורים)


דוגמא: [math]\displaystyle{ V=\{1,2,3\}, E=\Big\{\{1,2\},\{2,3\},\{1,3\}\Big\} }[/math] מייצג משולש.


הגדרה הסדר של גרף [math]\displaystyle{ G=(V,E) }[/math] הוא [math]\displaystyle{ |V| }[/math]. גרף יקרא סופי אם הסדר שלו סופי (וגם [math]\displaystyle{ E }[/math] סופית)


אנחנו נעסוק בגרפים לא מכוונים בלי לולאות כלומר המקיימים [math]\displaystyle{ \forall v\in V : \{v,v\}\not\in E }[/math]


הגדרה יהיה [math]\displaystyle{ G=(V,E) }[/math] נאמר כי [math]\displaystyle{ v,w\in V }[/math] שכנים אם [math]\displaystyle{ \{v,w\}\in E }[/math].

במקרה זה נאמר כי הצלע [math]\displaystyle{ \{v,w\}\in E }[/math] חלה ב [math]\displaystyle{ w }[/math] (או חלה ב [math]\displaystyle{ v }[/math])

את קבוצת השכנים של [math]\displaystyle{ u }[/math] מסמנים כ [math]\displaystyle{ \Gamma(u)=\{v\in V \: :\; \{v,u\}\in E\} }[/math]

הדרגה של [math]\displaystyle{ u }[/math] היא מספר הצלעות החלות ב [math]\displaystyle{ u }[/math] או לחילופין [math]\displaystyle{ |\Gamma(u)| }[/math]