קוד:גבול של פונקציה מונוטונית: הבדלים בין גרסאות בדף

מתוך Math-Wiki
(יצירת דף עם התוכן "<latex2pdf> <tex>קוד:ראש</tex> אומרים ש- $f:A\to \mathbb{R} , A\subseteq\mathbb{R} $ מונוטונית עולה אם $\forall x,y\in A : x\leq y \...")
 
אין תקציר עריכה
שורה 1: שורה 1:
<latex2pdf>
\begin{definition}
<tex>קוד:ראש</tex>
אומרים ש- $f:A\to \mathbb{R} , A\subseteq\mathbb{R} $ מונוטונית עולה אם $\forall x,y\in A : x\leq y \Rightarrow f(x)\leq f(y) $ ומונוטונית יורדת אם $\forall x,y\in A : x\leq y \Rightarrow f(x)\geq f(y) $
\end{definition}


אומרים ש- $f:A\to \mathbb{R} , A\subseteq\mathbb{R} $ מונוטונית עולה אם $\forall x,y\in A : x\leq y \Rightarrow f(x)\leq f(y) $ ומונוטונית יורדת אם $\forall x,y\in A : x\leq y \Rightarrow f(x)\geq f(y) $  
\begin{theorem}
אם $f:[a,b]\to\mathbb{R} $ מונוטונית אזי קיימים $\lim_{x\to a} f(x) , \lim_{x\to b} f(x) $ והם $\sup_{x\in (a,b)} f(x) , \inf_{x\in (a,b) } f(x) $ (לאו דווקא בהתאמה, זה תלוי אם מונוטונית עולה או יורדת)
\end{theorem}
 
\begin{proof}
נתרכז במקרה ש- $f$ מונו' עולה. נגדיר בשביל הפשטות $Q=\sup_{x\in (a,b)} f(x) $ . מתקיים $\forall x\in (a,b) : f(x)\leq Q $. יהי $\varepsilon>0$ ולכן קיים $x_0 $ כך ש- $Q-\varepsilon<f(x_0)\leq Q $ ואז מתקיים ש- $\forall x>x_0 : Q-\varepsilon<f(x_0)\leq f(x)\leq Q $ לכן אם ניקח את $\delta=b-x_0 $ יתקיים ש- $\forall_x : |x-b|<\delta \Rightarrow |f(x)-Q|<\varepsilon $. לכן לפי הגדרת הגבול נקבל את הדרוש, ובאופן דומה קל להוכיח ש- $\lim_{x\to a} f(x) = \inf_{x \in (a,b)} f(x) $
\end{proof}


<tex>קוד:זנב</tex>
מסקנה: אם פונקציה מונוטונית בקטע $(a,b) $ וחסומה אז קיימים $\lim_{x\to a} f(x) , \lim_{x\to b} f(x) $ סופיים
</latex2pdf>

גרסה מ־14:41, 26 באוגוסט 2014

\begin{definition} אומרים ש- $f:A\to \mathbb{R} , A\subseteq\mathbb{R} $ מונוטונית עולה אם $\forall x,y\in A : x\leq y \Rightarrow f(x)\leq f(y) $ ומונוטונית יורדת אם $\forall x,y\in A : x\leq y \Rightarrow f(x)\geq f(y) $ \end{definition}

\begin{theorem} אם $f:[a,b]\to\mathbb{R} $ מונוטונית אזי קיימים $\lim_{x\to a} f(x) , \lim_{x\to b} f(x) $ והם $\sup_{x\in (a,b)} f(x) , \inf_{x\in (a,b) } f(x) $ (לאו דווקא בהתאמה, זה תלוי אם מונוטונית עולה או יורדת) \end{theorem}

\begin{proof} נתרכז במקרה ש- $f$ מונו' עולה. נגדיר בשביל הפשטות $Q=\sup_{x\in (a,b)} f(x) $ . מתקיים $\forall x\in (a,b) : f(x)\leq Q $. יהי $\varepsilon>0$ ולכן קיים $x_0 $ כך ש- $Q-\varepsilon<f(x_0)\leq Q $ ואז מתקיים ש- $\forall x>x_0 : Q-\varepsilon<f(x_0)\leq f(x)\leq Q $ לכן אם ניקח את $\delta=b-x_0 $ יתקיים ש- $\forall_x : |x-b|<\delta \Rightarrow |f(x)-Q|<\varepsilon $. לכן לפי הגדרת הגבול נקבל את הדרוש, ובאופן דומה קל להוכיח ש- $\lim_{x\to a} f(x) = \inf_{x \in (a,b)} f(x) $ \end{proof}

מסקנה: אם פונקציה מונוטונית בקטע $(a,b) $ וחסומה אז קיימים $\lim_{x\to a} f(x) , \lim_{x\to b} f(x) $ סופיים