קוד:חישוב גבולות עם שארית פיאנו: הבדלים בין גרסאות בדף

מתוך Math-Wiki
אין תקציר עריכה
מ (2 גרסאות יובאו)
 
(אין הבדלים)

גרסה אחרונה מ־20:16, 4 באוקטובר 2014

ניתן להשתמש בשארית פיאנו ובהגדרת $o(x-x_0)^n, x\to x_0 $ כדי לחשב גבולות.

\begin{example}

$\lim_{x\to 0} \frac{\cos x - e^{\frac{x^2}{2}}}{x^4}$ .\\ $\cos x = 1-\frac{x^2}{2}+\frac{x^4}{24}+o(x^4) , e^{-\frac{x^2}{2}}=1-\frac{x^2}{2} + \frac{x^4}{8}+o(x^4) $

לכן $$\lim_{x\to 0} \frac{\cos x - e^{\frac{x^2}{2}}}{x^4} = \lim_{x\to 0} \frac{1-\frac{x^2}{2}+\frac{x^4}{24}+o(x^4)-1+\frac{x^2}{2}-\frac{x^4}{8}+o(x^4)}{x^4} = $$ $$\lim_{x\to 0} \frac{(\frac{1}{24}-\frac{1}{8})x^4 + o(x^4)}{x^4}=\frac{1}{24}-\frac{1}{8}=\frac{-1}{12} $$

\end{example}