קוד:למת רול: הבדלים בין גרסאות בדף
Ofekgillon10 (שיחה | תרומות) (יצירת דף עם התוכן "\begin{definition} $C(A)$ = כל הפונקציות שרציפות בקבוצה $A$ . $D(A) $ = כל הפונקציות שגזירות בקבוצה $A$ \end{def...") |
Ofekgillon10 (שיחה | תרומות) אין תקציר עריכה |
||
שורה 5: | שורה 5: | ||
\end{definition} | \end{definition} | ||
\begin{ | \begin{thm} | ||
תהי $f\in C[a,b] \cap D(a,b) $ כך ש- $f(a)=f(b) $ אזי $\exists c\in (a,b) : f'(c)=0 $ | תהי $f\in C[a,b] \cap D(a,b) $ כך ש- $f(a)=f(b) $ אזי $\exists c\in (a,b) : f'(c)=0 $ | ||
\end{ | \end{thm} | ||
\begin{proof} | \begin{proof} | ||
לפי משפט וויירשטראס הפונקציה מקבלת מקסימום ומינימום ב- $[a,b] $ , אם אחד מהם לא בקצוות אזי הוא ב- $(a,b) $ ומכאן שהפונקציה גזירה בו והנגזרת בו הוא $0$. אם גם המינימום וגם המקסימום בקצוות נקבל שהפונקציה קבועה ולכן היא ישר והנגזרת שלה באופן זהותי הוא $0$. | לפי משפט וויירשטראס הפונקציה מקבלת מקסימום ומינימום ב- $[a,b] $ , אם אחד מהם לא בקצוות אזי הוא ב- $(a,b) $ ומכאן שהפונקציה גזירה בו והנגזרת בו הוא $0$. אם גם המינימום וגם המקסימום בקצוות נקבל שהפונקציה קבועה ולכן היא ישר והנגזרת שלה באופן זהותי הוא $0$. | ||
\end{proof} | \end{proof} |
גרסה מ־15:33, 29 באוגוסט 2014
\begin{definition} $C(A)$ = כל הפונקציות שרציפות בקבוצה $A$ .
$D(A) $ = כל הפונקציות שגזירות בקבוצה $A$ \end{definition}
\begin{thm} תהי $f\in C[a,b] \cap D(a,b) $ כך ש- $f(a)=f(b) $ אזי $\exists c\in (a,b) : f'(c)=0 $ \end{thm}
\begin{proof} לפי משפט וויירשטראס הפונקציה מקבלת מקסימום ומינימום ב- $[a,b] $ , אם אחד מהם לא בקצוות אזי הוא ב- $(a,b) $ ומכאן שהפונקציה גזירה בו והנגזרת בו הוא $0$. אם גם המינימום וגם המקסימום בקצוות נקבל שהפונקציה קבועה ולכן היא ישר והנגזרת שלה באופן זהותי הוא $0$. \end{proof}