קוד:מעבר גבול: הבדלים בין גרסאות בדף
Ofekgillon10 (שיחה | תרומות) (יצירת דף עם התוכן "תהי הסדרה $\{x_n\}_{n=1}^{\infty} $ שאיבריה נראים ככה: $x_1,x_2,x_3,\cdots $ ונניח ש- $\lim_{n\to \infty} x_n =L $ . נסתכל על...") |
Ofekgillon10 (שיחה | תרומות) אין תקציר עריכה |
||
שורה 3: | שורה 3: | ||
העקרון הזה הוא ליבו של טריק נחמד שעוזר לחשב במקרים רבים גבולות של סדרות הנתונות בצורה רקורסיבית. השיטה היא כזאת: אם נתון ש- $x_{n+1}=f(x_n)$ אז גם $\lim_{n\to \infty} x_{n+1} = \lim_{n\to \infty} f(x_n) $ אבל $\lim_{n\to\infty} x_{n+1} = L $ ובאגף ימין אפשר גם להשתמש באריתמטיקה של גבולות כדי להציב $L$ במקומות המתאימים, וכך מגיעים למשוואה. צריך לשים לב שכל זה בא בהנחה שהסדרה $x_n$ | העקרון הזה הוא ליבו של טריק נחמד שעוזר לחשב במקרים רבים גבולות של סדרות הנתונות בצורה רקורסיבית. השיטה היא כזאת: אם נתון ש- $x_{n+1}=f(x_n)$ אז גם $\lim_{n\to \infty} x_{n+1} = \lim_{n\to \infty} f(x_n) $ אבל $\lim_{n\to\infty} x_{n+1} = L $ ובאגף ימין אפשר גם להשתמש באריתמטיקה של גבולות כדי להציב $L$ במקומות המתאימים, וכך מגיעים למשוואה. צריך לשים לב שכל זה בא בהנחה שהסדרה $x_n$ | ||
מתכנסת, ואת זה יש להוכיח! | מתכנסת, ואת זה יש להוכיח! | ||
\begin{example} | |||
מהו הגבול של הסדרה $x_1=\sqrt{2},x_2=\sqrt{2+\sqrt{2}},\cdots,x_{n+1}=\sqrt{2+x_n} $ ? | |||
פתרון: נניח שהסדרה מתכנסת, ולכן $\lim_{n\to \infty} x_{n+1}=\lim_{n\to \infty} \sqrt{2+x} $ . מכאן | פתרון: נניח שהסדרה מתכנסת, ולכן $\lim_{n\to \infty} x_{n+1}=\lim_{n\to \infty} \sqrt{2+x} $ . מכאן | ||
$\lim_{n\to \infty} x_{n+1}^2 = \lim_{n\to \infty} 2+x_n $ | $$\lim_{n\to \infty} x_{n+1}^2 = \lim_{n\to \infty} 2+x_n $$ | ||
נציב $\lim_{n\to \infty} x_n=L $ ואז | נציב $\lim_{n\to \infty} x_n=L $ ואז | ||
$$L^2=2+L$$ | |||
$L^2=2+L$ | $$L^2-L-2=(L-2)(L+1)=0 $$ | ||
$$L=-1,2 $$ | |||
$L^2-L-2=(L-2)(L+1)=0 $ | |||
$L=-1,2 $ | |||
מצאנו שבמקרה שהסדרה מתכנסת, יש רק מועמד אחד שיכול להיות הגבול ( $-1$ נפסל משום שכל איברי הסדרה חיוביים ולכן לא יכולים להתכנס למספר שלילי). אם נצליח להוכיח שהסדרה מתכנסת, הגבול שלה הוא 2. נוכיח שהיא מונוטונית עולה וחסומה ע"י 2: | מצאנו שבמקרה שהסדרה מתכנסת, יש רק מועמד אחד שיכול להיות הגבול ( $-1$ נפסל משום שכל איברי הסדרה חיוביים ולכן לא יכולים להתכנס למספר שלילי). אם נצליח להוכיח שהסדרה מתכנסת, הגבול שלה הוא 2. נוכיח שהיא מונוטונית עולה וחסומה ע"י 2: | ||
מונוטונית עולה - | מונוטונית עולה - | ||
$$ x_n\leq x_{n+1} \Leftrightarrow x_n\leq \sqrt{x_n+2}\Leftrightarrow x_n^2\leq x_n+2\Leftrightarrow -1\leq x_n\leq 2 $$ | |||
$ x_n\leq x_{n+1} \Leftrightarrow x_n\leq \sqrt{x_n+2}\Leftrightarrow x_n^2\leq x_n+2\Leftrightarrow -1\leq x_n\leq 2 $ | |||
כלומר הסדרה לא תרד כל עוד האיברים בין $-1$ ל-2. כל איברי הסדרה חיוביים ועכשיו נוכיח שכל איברי הסדרה לא גדולים מ-2 באמצעות אינדוקציה: | כלומר הסדרה לא תרד כל עוד האיברים בין $-1$ ל-2. כל איברי הסדרה חיוביים ועכשיו נוכיח שכל איברי הסדרה לא גדולים מ-2 באמצעות אינדוקציה: | ||
$$ x_1=\sqrt{2}<2 , x_n\leq 2\Rightarrow x_{n+1}=\sqrt{x_n+2}\leq\sqrt{2+2}=2 $$ | |||
אז כל איברי הסדרה קטנים מ-2 ולכן הסדרה מונוטונית עולה וחסומה ומכאן שמתכנסת ל-2. (את הגבול חישבנו באמצעות מעבר הגבול) | |||
\end{example} | |||
גרסה מ־16:00, 3 בספטמבר 2014
תהי הסדרה $\{x_n\}_{n=1}^{\infty} $ שאיבריה נראים ככה: $x_1,x_2,x_3,\cdots $ ונניח ש- $\lim_{n\to \infty} x_n =L $ . נסתכל על הסדרה $x_{n+1} $ שאיבריה הם $x_2,x_3,x_4,\cdots $ , ונראה ש- $\lim_{n\to\infty} x_{n+1}=L$ גם כן. זאת משום שעבור $\epsilon>0$ ידוע ש- $\exists_{n_0}\forall_{n>n_0} : |x_n-L|<\epsilon $ וכיוון שזה לכל $n>n_0 $ אז במצב כזה גם $n+1 $ (שהוא גדול מ- $n$ שגדול מ- $n_0 $ ) מקיים את הטענה ש- $ |x_{n+1}-L|<\epsilon $ . $\\$ העקרון הזה הוא ליבו של טריק נחמד שעוזר לחשב במקרים רבים גבולות של סדרות הנתונות בצורה רקורסיבית. השיטה היא כזאת: אם נתון ש- $x_{n+1}=f(x_n)$ אז גם $\lim_{n\to \infty} x_{n+1} = \lim_{n\to \infty} f(x_n) $ אבל $\lim_{n\to\infty} x_{n+1} = L $ ובאגף ימין אפשר גם להשתמש באריתמטיקה של גבולות כדי להציב $L$ במקומות המתאימים, וכך מגיעים למשוואה. צריך לשים לב שכל זה בא בהנחה שהסדרה $x_n$ מתכנסת, ואת זה יש להוכיח! \begin{example} מהו הגבול של הסדרה $x_1=\sqrt{2},x_2=\sqrt{2+\sqrt{2}},\cdots,x_{n+1}=\sqrt{2+x_n} $ ?
פתרון: נניח שהסדרה מתכנסת, ולכן $\lim_{n\to \infty} x_{n+1}=\lim_{n\to \infty} \sqrt{2+x} $ . מכאן
$$\lim_{n\to \infty} x_{n+1}^2 = \lim_{n\to \infty} 2+x_n $$ נציב $\lim_{n\to \infty} x_n=L $ ואז $$L^2=2+L$$ $$L^2-L-2=(L-2)(L+1)=0 $$ $$L=-1,2 $$ מצאנו שבמקרה שהסדרה מתכנסת, יש רק מועמד אחד שיכול להיות הגבול ( $-1$ נפסל משום שכל איברי הסדרה חיוביים ולכן לא יכולים להתכנס למספר שלילי). אם נצליח להוכיח שהסדרה מתכנסת, הגבול שלה הוא 2. נוכיח שהיא מונוטונית עולה וחסומה ע"י 2:
מונוטונית עולה - $$ x_n\leq x_{n+1} \Leftrightarrow x_n\leq \sqrt{x_n+2}\Leftrightarrow x_n^2\leq x_n+2\Leftrightarrow -1\leq x_n\leq 2 $$ כלומר הסדרה לא תרד כל עוד האיברים בין $-1$ ל-2. כל איברי הסדרה חיוביים ועכשיו נוכיח שכל איברי הסדרה לא גדולים מ-2 באמצעות אינדוקציה: $$ x_1=\sqrt{2}<2 , x_n\leq 2\Rightarrow x_{n+1}=\sqrt{x_n+2}\leq\sqrt{2+2}=2 $$ אז כל איברי הסדרה קטנים מ-2 ולכן הסדרה מונוטונית עולה וחסומה ומכאן שמתכנסת ל-2. (את הגבול חישבנו באמצעות מעבר הגבול)
\end{example}