88-112 לינארית 1 תיכוניסטים קיץ תשעא/מערך תרגול/7: הבדלים בין גרסאות בדף

מתוך Math-Wiki
שורה 223: שורה 223:
'''שימו לב:''' בהנתן מרחב כלשהו (פולינומים, מטריצות, פונקציות) ניתן לבצע את החישובים על מרחב הקואורדינטות. כפי שראינו בשיעור שעבר, מציאת בסיס למרחבים רבים שקולה למציאת בסיס למרחב האפס של מטריצה מסוימת.
'''שימו לב:''' בהנתן מרחב כלשהו (פולינומים, מטריצות, פונקציות) ניתן לבצע את החישובים על מרחב הקואורדינטות. כפי שראינו בשיעור שעבר, מציאת בסיס למרחבים רבים שקולה למציאת בסיס למרחב האפס של מטריצה מסוימת.


===סיכום בנושא מימדי מרחבים המטריצה והדרגה===
תהי A מטריצה. המספרים הבאים שווים (זה נובע מהחומר שלמדנו עד עכשיו):
*דרגת המטריצה
*מימד מרחב העמודות
*מימד מרחב השורות
*מספר השורות השונות מאפס בצורה הקנונית
*מספר האיברים הפותחים
*מספר עמודות הציר
*מספר המשתנים התלויים




המספרים הבאים שווים:
===תרגיל.===
*מספר המשתנים החופשיים
*מימד מרחב הפתרונות של המערכת ההומוגנית
 
מכיוון שמספר המשתנים החופשיים ועוד מספר המשתנים התלויים שווה לסך כל המשתנים, וזהו מספר העמודות במטריצה, נובע שדרגת המטריצה ועוד מימד מרחב הפתרונות שווים למספר העמודות מ.
 
 
'''תרגיל.'''
הוכח כי לכל מטריצה <math>A\in\mathbb{R}^{m\times n}</math> מתקיים <math>\mathbb{R}^n=R(A)\oplus N(A)</math>
הוכח כי לכל מטריצה <math>A\in\mathbb{R}^{m\times n}</math> מתקיים <math>\mathbb{R}^n=R(A)\oplus N(A)</math>



גרסה מ־10:30, 17 ביולי 2015

חזרה למערכי התרגול

מרחבי המטריצות

תהי מטריצה [math]\displaystyle{ A\in\mathbb{F}^{m\times n} }[/math]. מגדירים 4 מרחבים עיקריים:

  • מרחב העמודות של A. זהו המרחב הנפרש על ידי עמודות המטריצה A. נסמן [math]\displaystyle{ C(A)=span\{C_1(A),...,C_n(A)\}=\{Ax\; | \; x\in \mathbb{F}^n\}\leq\mathbb{F}^m }[/math]
  • 'מרחב השורות של A. זהו המרחב הנפרש על ידי עמודות המטריצה A. נסמן [math]\displaystyle{ R(A)=span\{R_1(A),...,R_m(A)\}=\{A^tx\; | \; x\in \mathbb{F}^m\}=C(A^t)\leq\mathbb{F}^n }[/math]
  • מרחב האפס של A. זהו מרחב הפתרונות של המערכת ההומוגנית [math]\displaystyle{ Ax=0 }[/math]. נסמן [math]\displaystyle{ N(A)=\{x\in\mathbb{F}^n|Ax=0\}\leq\mathbb{F}^n }[/math]
  • מרחב האפס השמאלי של A. זהו מרחב הפתרונות של המערכת ההומוגנית [math]\displaystyle{ A^tx=0 }[/math]. נסמן [math]\displaystyle{ N(A^t)=\{x\in\mathbb{F}^m|A^tx=0\}=\{x\in\mathbb{F}^m|x^tA=0\} \leq \mathbb{F}^m }[/math]

דוגמא:

[math]\displaystyle{ A=\left(\begin{array}{ccc} 1 & 0 & 0\\ 0 & 0 & 1 \end{array}\right) }[/math] אזי

1. [math]\displaystyle{ C(A)=span\{\left(\begin{array}{c} 1\\ 0 \end{array}\right),\left(\begin{array}{c} 0\\ 1 \end{array}\right)\} }[/math]


2. [math]\displaystyle{ R(A)=span\{\left(\begin{array}{c} 1\\ 0\\ 0 \end{array}\right),\left(\begin{array}{c} 0\\ 0\\ 1 \end{array}\right)\} }[/math]


3. [math]\displaystyle{ N(A)=\{\left(\begin{array}{c} 0\\ t\\ 0 \end{array}\right)\} }[/math]

4. [math]\displaystyle{ N(A^{t})=\{0\} }[/math]


מרחב השורות

תרגיל: תהא [math]\displaystyle{ A\in\mathbb{F}^{m\times n} }[/math] ותהא [math]\displaystyle{ E\in\mathbb{F}^{m\times m} }[/math] מטריצה הפיכה (למשל מכפלת מטריצות אלמנטריות שמדרגות את [math]\displaystyle{ A }[/math]).

הוכח [math]\displaystyle{ R(A)=R(EA) }[/math].

הוכחה:

([math]\displaystyle{ \supseteq }[/math]) יהא [math]\displaystyle{ (EA)^{t}x\in R(EA) }[/math] אזי

[math]\displaystyle{ (EA)^{t}x=A^{t}E^{t}x=A^{t}(E^{t}x)=A^{t}y\in R(A) }[/math].

([math]\displaystyle{ \subseteq }[/math]) יהא [math]\displaystyle{ A^{t}x\in R(A) }[/math] אזי

[math]\displaystyle{ A^{t}x=(E^{-1}EA)^{t}x= (EA)^tE^{-t}x = (EA)^ty \in R(EA) }[/math]

מסקנה: בפרט אם [math]\displaystyle{ E }[/math] מכפלה של מטריצות אלמנטריות המעבירות את [math]\displaystyle{ A }[/math] לצורה מדורגת/קנונית אז נקבל כי מרחב השורות של [math]\displaystyle{ A }[/math] שווה למרחב השורות של הצורה המדורגת/קנונית.

תרגיל/דוגמא:

תהא [math]\displaystyle{ A=\left(\begin{array}{cccc} 1 & 2 & 3 & 4\\ 0 & 1 & 0 & 1\\ 1 & 3 & 3 & 5 \end{array}\right) }[/math] מצא את [math]\displaystyle{ R(A) }[/math].

פתרון: [math]\displaystyle{ \left(\begin{array}{cccc} 1 & 2 & 3 & 4\\ 0 & 1 & 0 & 1\\ 1 & 3 & 3 & 5 \end{array}\right)\to\left(\begin{array}{cccc} 1 & 2 & 3 & 4\\ 0 & 1 & 0 & 1\\ 0 & 1 & 0 & 1 \end{array}\right)\to\left(\begin{array}{cccc} 1 & 2 & 3 & 4\\ 0 & 1 & 0 & 1\\ 0 & 0 & 0 & 0 \end{array}\right) }[/math] .

כיוון שמרחב השורות של [math]\displaystyle{ A }[/math] שווה למרחב השורות לאחר דירוג נקבל ש

[math]\displaystyle{ R(A)=span\{ \left(\begin{array}{cccc} 1 & 2 & 3 & 4\end{array}\right),\left(\begin{array}{cccc} 0 & 1 & 0 & 1\end{array}\right)\}=\{\left(\begin{array}{c} a\\ 2a+b\\ 3a\\ 4a+b \end{array}\right) \; | \; a,b\in \mathbb{R}\} }[/math]

מרחב העמודות

את מרחב העמודות ניתן למצוא כמו את מרחב השורות ע"י מעבר ל [math]\displaystyle{ A^{t} }[/math]. נראה ע"י דוגמא עוד דרך:

דוגמא: מצא את מרחב העמודות של [math]\displaystyle{ A=\left(\begin{array}{cccc} 1 & 2 & 3 & 4\\ 0 & 1 & 0 & 1\\ 1 & 3 & 3 & 5 \end{array}\right) }[/math]


פתרון: אחרי דירוג קיבלנו [math]\displaystyle{ \left(\begin{array}{cccc} 1 & 2 & 3 & 4\\ 0 & 1 & 0 & 1\\ 0 & 0 & 0 & 0 \end{array}\right) }[/math]

ניתן להוכיח את הטענה: מרחב העמודות נפרש ע"י העמודות במטריצה המקורית שמתאימות לעמודות ציר.

אצלנו בדוגמא שעמודות הציר הן עמודות מספר 1 ו - 2 נקבל כי מרחב העמודות הוא [math]\displaystyle{ C(A)=span\{\left(\begin{array}{c} 1\\ 0\\ 1 \end{array}\right),\left(\begin{array}{c} 2\\ 1\\ 3 \end{array}\right)\} }[/math]

שימו לב שזה לא שווה למה שנפרש ע"י עמודות הציר של המטריצה המדורגת (כלומר מרחב העמודות "מתקלקל" בדירוג):

[math]\displaystyle{ C(A) \not= span\{\left(\begin{array}{c} 1\\ 0\\ 0 \end{array}\right),\left(\begin{array}{c} 2\\ 1\\ 0 \end{array}\right)\} }[/math] כי [math]\displaystyle{ \left(\begin{array}{c} 1\\ 0\\ 1 \end{array}\right)\notin span\{\left(\begin{array}{c} 1\\ 0\\ 0 \end{array}\right),\left(\begin{array}{c} 2\\ 1\\ 0 \end{array}\right) }[/math]

תרגיל: נסו להוכיח את הטענה שהשתמשנו בה בתרגיל. טענה: מרחב העמודות [math]\displaystyle{ C(A)=span \{C_{i_1}(A),\dots C_{i_r}(A)\} }[/math] כאשר [math]\displaystyle{ i_1,\dots i_r }[/math] אלו עמודות הציר במטריצה המדורגת.

הדרכה: השתמשו בעבודה [math]\displaystyle{ E }[/math] המטריצה המדרגת הפיכה ולכן בתליות ופרישה של עמודות לא מתקלקלים... (ניסוח לא פורמאלי)


משפט: [math]\displaystyle{ dim[R(A)]=dim[C(A)] }[/math]

הגדרה: הדרגה של [math]\displaystyle{ A }[/math] מוגדרת להיות [math]\displaystyle{ rank(A)=dim[R(A)] }[/math]

אבחנה: מימדי מרחבים המטריצה והדרגה

תהי [math]\displaystyle{ A }[/math] מטריצה. המספרים הבאים שווים (זה נובע מהחומר שלמדנו עד עכשיו):

  • דרגת המטריצה
  • מימד מרחב העמודות
  • מימד מרחב השורות
  • מספר השורות השונות מאפס בצורה הקנונית
  • מספר האיברים הפותחים
  • מספר עמודות הציר
  • מספר המשתנים התלויים


המספרים הבאים שווים:

  • מספר המשתנים החופשיים
  • מימד מרחב הפתרונות של המערכת ההומוגנית

מכיוון שמספר המשתנים החופשיים ועוד מספר המשתנים התלויים שווה לסך כל המשתנים, וזהו מספר העמודות במטריצה, נובע שדרגת המטריצה ועוד מימד מרחב הפתרונות שווים למספר העמודות.

כלומר עבור [math]\displaystyle{ A\in \mathbb{F}^{m\times n} }[/math]מתקיים [math]\displaystyle{ rank(A)+\dim N(A) = n }[/math]

מרחב האפס

דוגמא. מצא בסיס למרחב האפס של המטריצה [math]\displaystyle{ \begin{pmatrix}1 & 0 & 1 & 1 \\ 2 & 1 & 1 & 2\\ 1 & 1 & 0 & 1\end{pmatrix} }[/math]

דבר ראשון, נדרג קנונית את המטריצה לקבל

[math]\displaystyle{ \begin{pmatrix}1 & 0 & 1 & 1\\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0\end{pmatrix} }[/math]

לפיכך המשתנה השלישי והרביעי הם חופשיים, נציב במקומם פרמטרים t,s והפתרון הכללי הוא מהצורה [math]\displaystyle{ (-t-s,t,t,s) }[/math]. תמיד ניתן לפרק את הפתרון הכללי לסכום של וקטורים קבועים כפול הסקלרים שהם הפרמטרים: [math]\displaystyle{ t(-1,1,1,0) +s(-1,0,0,1) }[/math]. וקטורים קבועים אלה תמיד מהווים בסיס למרחב הפתרונות:

  • אנו רואים שכל פתרון הוא צירוף לינארי של הוקטורים הללו עם הסקלרים שהם הפרמטרים (במקרה זה - t,s)
  • וקטורים אלה תמיד בת"ל, שכן אם יש צירוף לינארי שלהם שמתאפס, מכיוון שהפרמטרים תמיד מופיעים לבדם בעמודה של המשתנה שלהם, הם חייבים להיות אפס

לכן הבסיס למרחב האפס הינו [math]\displaystyle{ \{(-1,0,0,1),(-1,1,1,0)\} }[/math]

מרחב האפס השמאלי

אלגוריתם למציאת שלושת מרחבי המטריצה [math]\displaystyle{ Cׂ(A),R(A),N(A) }[/math]

  1. דרג את המטריצה (ניתן גם לדרג קנונית אך לא חובה)
  2. השורות השונות מאפס מהוות בסיס למרחב השורה
  3. העמודות במטריצה המקורית המהוות עמודות ציר (כלומר יש איבר פותח בעמודה בצורה הקנונית), מהוות בסיס למרחב העמודה
  4. הצב פרמטרים במקום המשתנים החופשיים
  5. מצא את הפתרון הכללי
  6. פרק את הפתרון הכללי לצירוף לינארי של וקטורים קבועים כפול הפרמטרים
  7. הוקטורים הקבועים מהווים בסיס למרחב האפס


שימו לב: בהנתן מרחב כלשהו (פולינומים, מטריצות, פונקציות) ניתן לבצע את החישובים על מרחב הקואורדינטות. כפי שראינו בשיעור שעבר, מציאת בסיס למרחבים רבים שקולה למציאת בסיס למרחב האפס של מטריצה מסוימת.


תרגיל.

הוכח כי לכל מטריצה [math]\displaystyle{ A\in\mathbb{R}^{m\times n} }[/math] מתקיים [math]\displaystyle{ \mathbb{R}^n=R(A)\oplus N(A) }[/math]

פתרון. מכיוון שהרגע ראינו כי סכום המימדים מקיים [math]\displaystyle{ dimR(A)+dimN(A)=n }[/math] לפי משפט המימדים מספיק להוכיח שהחיתוך בינהם הינו אפס.

נניח וקיים v ששייך למרחב הפתרונות וגם למרחב השורות. מכיוון שהוא שייך למרחב השורות, ניתן להפעיל פעולות שורה על המטריצה כך שאחת משורותיה תהפוך להיות v, בלי הגבלת הכלליות תהא זו השורה הראשונה.

מכיוון ש-v במרחב הפתרונות של A, הוא גם במרחב הפתרונות של המטריצה לאחרת פעולות השורה B, ומתקיים [math]\displaystyle{ Bv=0 }[/math]. אבל האיבר הראשון במכפלה שווה ל[math]\displaystyle{ 0=R_1(A)v=v^tv }[/math] וכפי שלמדנו זהו סכום ריבועים שמתאפס ולכן v=0 כפי שרצינו.