88-112 לינארית 1 תיכוניסטים קיץ תשעא/מערך תרגול/8: הבדלים בין גרסאות בדף

מתוך Math-Wiki
שורה 16: שורה 16:
   
   


==דוגמאות ודוגמאות נגדיות ==
==דוגמאות ==


1. יהיו <math>V=\mathbb{F}^{n},\,W=\mathbb{F}^{m}</math> שניהם מעל <math>\mathbb{F}</math>.  תהא<math>A\in\mathbb{F}^{m\times n}</math>
1. יהיו <math>V=\mathbb{F}^{n},\,W=\mathbb{F}^{m}</math> שניהם מעל <math>\mathbb{F}</math>.  תהא<math>A\in\mathbb{F}^{m\times n}</math>
שורה 32: שורה 32:


<math>tr(\alpha A+B)=\alpha tr(A)+tr(B) </math>
<math>tr(\alpha A+B)=\alpha tr(A)+tr(B) </math>


3. <math>V=\mathbb{R}_{n}[x],\,W=\mathbb{R}_{n-1}[x]</math> שניהם מעל <math>\mathbb{R}</math>. אזי העתקה <math>D:V\to W</math>  
3. <math>V=\mathbb{R}_{n}[x],\,W=\mathbb{R}_{n-1}[x]</math> שניהם מעל <math>\mathbb{R}</math>. אזי העתקה <math>D:V\to W</math>  
שורה 39: שורה 40:


<math>D[\alpha p_{1}(x)+p_{2}(x)]=[\alpha p_{1}(x)+p_{2}(x)]'=\alpha p_{1}'(x)+p_{2}'(x)=\alpha D[p_{1}(x)]+D[p_{2}(x)]</math>
<math>D[\alpha p_{1}(x)+p_{2}(x)]=[\alpha p_{1}(x)+p_{2}(x)]'=\alpha p_{1}'(x)+p_{2}'(x)=\alpha D[p_{1}(x)]+D[p_{2}(x)]</math>
4. העתקת הזהות <math>I:V\to V</math> המוגדרת <math>v\mapsto v</math> היא ה"ל.
5. העתקת האפס <math>0:V\to W</math> המוגדרת <math>v\mapsto 0</math> היא ה"ל.
6. יהי <math>V</math> מ"ו מעל <math>\mathbb{F}</math> מימד <math>n</math> ויהי <math>B</math> בסיס אזי הפונקציה <math>T:V\to \mathbb{F}^n</math>
המוגדרת <math>v\mapsto [v]_B</math> היא ה"ל.

גרסה מ־20:11, 18 ביולי 2015

העתקות לינאריות (ה"ל)

הגדרה: יהיו [math]\displaystyle{ V,W }[/math] שני מ"ו מעל אותו שדה [math]\displaystyle{ \mathbb{F} }[/math]. ה"ל היא פונקציה [math]\displaystyle{ T:V\to W }[/math] אם

  1. [math]\displaystyle{ \forall v_1,v_2\in V : \; T(v_1+v_2)=T(v_1)+T(v_2) }[/math]
  2. [math]\displaystyle{ \forall \alpha\in \mathbb{F}, v\in V : \; T(\alpha v)=\alpha T(v) }[/math]

(או באופן שקול: אם לכל [math]\displaystyle{ v_{1},v_{2}\in V,\,\alpha\in\mathbb{F} }[/math] מתקיים [math]\displaystyle{ T(\alpha v_{1}+v_{2})=\alpha T(v_{1})+T(v_{2}) }[/math])


תכונות בסיסיות:

.1 [math]\displaystyle{ T(\alpha_{1}v_{1}+\alpha_{2}v_{2}+\cdots+\alpha_{n}v_{n})=\alpha_{1}T(v_{1})+\alpha_{2}T(v_{2})+\cdots+\alpha_{n}T(v_{n}) }[/math]


.2 [math]\displaystyle{ T(0_{V})=0_{W} }[/math]


דוגמאות

1. יהיו [math]\displaystyle{ V=\mathbb{F}^{n},\,W=\mathbb{F}^{m} }[/math] שניהם מעל [math]\displaystyle{ \mathbb{F} }[/math]. תהא[math]\displaystyle{ A\in\mathbb{F}^{m\times n} }[/math] אזי העתקה [math]\displaystyle{ L_{A}:V\to W }[/math] המוגדרת [math]\displaystyle{ v\mapsto Av }[/math] היא ה"ל.

הוכחה: לכל [math]\displaystyle{ v_{1},v_{2}\in V,\,\alpha\in\mathbb{F} }[/math] מתקיים

[math]\displaystyle{ L_{A}(\alpha v_{1}+v_{2})=A(\alpha v_{1}+v_{2})=\alpha Av_{1}+Av_{2}=\alpha L_{A}(v_{1})+L_{A}(v_{2}) }[/math]


2. [math]\displaystyle{ V=\mathbb{F}^{n\times n},\,W=\mathbb{F} }[/math] שניהם מעל [math]\displaystyle{ \mathbb{F} }[/math]. אזי העתקה [math]\displaystyle{ trace:V\to W }[/math] המגודרת [math]\displaystyle{ A\mapsto tr(A) }[/math] היא ה"ל.

הוכחה: לכל [math]\displaystyle{ \alpha \in \mathbb{F}, A,B\in \mathbb{F}^{n\times n} }[/math]

[math]\displaystyle{ tr(\alpha A+B)=\alpha tr(A)+tr(B) }[/math]


3. [math]\displaystyle{ V=\mathbb{R}_{n}[x],\,W=\mathbb{R}_{n-1}[x] }[/math] שניהם מעל [math]\displaystyle{ \mathbb{R} }[/math]. אזי העתקה [math]\displaystyle{ D:V\to W }[/math] המגודרת [math]\displaystyle{ p(x)\mapsto\frac{d}{dx}p(x)=p'(x) }[/math] היא ה"ל.

הוכחה:

[math]\displaystyle{ D[\alpha p_{1}(x)+p_{2}(x)]=[\alpha p_{1}(x)+p_{2}(x)]'=\alpha p_{1}'(x)+p_{2}'(x)=\alpha D[p_{1}(x)]+D[p_{2}(x)] }[/math]


4. העתקת הזהות [math]\displaystyle{ I:V\to V }[/math] המוגדרת [math]\displaystyle{ v\mapsto v }[/math] היא ה"ל.

5. העתקת האפס [math]\displaystyle{ 0:V\to W }[/math] המוגדרת [math]\displaystyle{ v\mapsto 0 }[/math] היא ה"ל.

6. יהי [math]\displaystyle{ V }[/math] מ"ו מעל [math]\displaystyle{ \mathbb{F} }[/math] מימד [math]\displaystyle{ n }[/math] ויהי [math]\displaystyle{ B }[/math] בסיס אזי הפונקציה [math]\displaystyle{ T:V\to \mathbb{F}^n }[/math] המוגדרת [math]\displaystyle{ v\mapsto [v]_B }[/math] היא ה"ל.