88-195 בדידה לתיכוניסטים תשעא/מערך שיעור/שיעור 11: הבדלים בין גרסאות בדף
אחיה בר-און (שיחה | תרומות) (←תרגיל) |
(עריכה) |
||
שורה 2: | שורה 2: | ||
= הגדרות בסיסיות = | = הגדרות בסיסיות = | ||
'''הגדרה''' | '''הגדרה''': '''גרף''' <math>G</math> מעל קבוצה <math>V</math> הוא זוג סדור <math>G=(V,E)</math> כאשר math>E \subseteq V\times V</math> - כלומר קבוצה המכילה זוגות סדורים מאיברי <math>V</math>. | ||
הקבוצה <math>V</math> היא קבוצת ה'''קדקודים''' של הגרף, והקבוצה <math>E</math> היא קבוצת הקשתות/צלעות של הגרף. | |||
'''הגדרה''': הסדר של גרף <math>G=(V,E)</math> הוא <math>|V|</math>. גרף יקרא סופי אם הסדר שלו סופי, וקבוצת הקשתות <math>E</math> סופית. | |||
'''הגדרה''': גרף <math>G</math> ייקרא '''לא מכוון''' אם היחס <math>E</math> הוא סימטרי, כלומר אין משמעות לכיוון הצלע. אחרת הגרף ייקרא מכוון. בגרף לא מכוון, אין משמעות לכיוון הצלע, ולכן לעתים מסמנים <math>(u,v)</math> בתור <math>\{u,v\}</math>. | |||
'''דוגמא''': <math>V=\{1,2,3\}, E=\Big\{\{1,2\},\{2,3\},\{1,3\}\Big\}</math> מייצג משולש. הסדר שלו הוא 3, כמספר הצלעות במשולש, ובפרט הוא סופי. | |||
''' | '''הערה''': שימו לב שמהניסוח לעיל נובע- | ||
# בגרף יכולה להיות קשת מקדקוד אל עצמו (לולאה). זה שקול ל- <math>\exists (v,v) \in E</math>. | |||
#צלע בין שני קדקודים יכולה להופיע אך ורק פעם אחת (כי <math>E</math> קבוצה). בפועל, יש גרפים שבהם מופיעה יותר מצלע אחת בין שני קדקודים (למשל שתי לולאות סביב נקודה). נסו לחשוב איך להגדיר את זה פורמלית. | |||
'''הבהרה: אנחנו נעסוק בגרפים סופיים, לא מכוונים, בלי צלעות כפולות ובלי לולאות'''. | |||
'''הגדרה''' יהיה <math>G=(V,E)</math>. נאמר כי <math>v,w\in V</math> '''שכנים''' אם <math>(v,w)\in E</math>. במקרה זה נאמר כי הצלע <math>\{v,w\}\in E</math> חלה ב <math>w</math> (או חלה ב <math>v</math>) | |||
את קבוצת השכנים של <math>u</math> מסמנים <math>\Gamma(u)=\{v\in V \; :\; \{v,u\}\in E\}</math>. | |||
''' | ה'''דרגה''' של <math>u</math>, המסומנת <math>\text{degree}(u)</math>, היא מספר הצלעות החלות ב <math>u</math>, כלומר <math>|\Gamma(u)|</math>. | ||
'''דוגמא:''' במשולש, כל 2 קדקודים שכנים. כל קדקוד מדרגה 2: השכנים של כל קדקוד הם שני הקדקודים האחרים. | |||
==משפט (לחיצת הידיים)== | |||
יהי <math>G=(V,E)</math> גרף לא מכוון. אזי <math>\sum_{v\in V}\text{degree}(v)=2|E|</math>. | |||
=== תרגיל === | === תרגיל === | ||
נאמר כי גרף <math>G=(V,E)</math> הוא '''<math>k</math>-רגולרי''' אם כל הדרגה של כל קדקוד שווה ל-<math>k</math>. | |||
הוכח כי לא קיים גרף k-רגולרי מסדר n | הוכח כי אם <math>k,n</math> אי-זוגיים, לא קיים גרף <math>k</math>-רגולרי מסדר <math>n</math>. | ||
הוכחה: | הוכחה: | ||
לפי משפט לחיצת הידיים <math>2|E|=\sum_{v\in V}\text{degree}(v)=n\cdot k</math>. אבל מכפלה של מספרים אי זוגיים היא אי-זוגית, ולכן <math>k</math> זוגי או <math>n</math> זוגי. | |||
==הגדרות נוספות== | |||
= | יהי <math>G=(V,E)</math> גרף לא מכוון. סדרת קדקודים (סדורה) <math>(v_0,v_1,\dots,v_n)</math> נקראת '''מסלול''' אם <math>\forall i : \{v_i,v_{i+1}\}\in E</math> וגם כל הצלעות שונות - כלומר לכל <math>i\neq j</math> מתקיים <math>(v_i,v_{i+1}) \neq (v_j,v_{j+1})</math>. | ||
מסלול יקרא '''פשוט''' אם כל הקדקודים <math>(v_0,v_1,\dots,v_n)</math> שונים זה מזה, פרט אולי ל <math>v_0=v_n</math>, ובמקרה זה המסלול נקרא '''מעגל'''. אורך המסלול <math>(v_0,v_1,\dots,v_n)</math> הוא <math>n</math>, והנקודות <math>v_0</math> ו-<math>v_n</math> נקראות '''נקודות ההתחלה והסיום''' של המסלול. | |||
<math> | |||
'''הגדרה''': המרחק בין <math>v,u\in V</math> הוא המסלול עם אורך מינימלי בין <math>v,u\in V</math>. אם אין מסלול בין הנקודות, אומרים שהמרחק הוא אינסוף. מסמנים את המרחק <math>d(u,v)</math>, ואם יש צורך להדגיש את הגרפים אז מסמנים <math>d_G(u,v)</math>. | |||
ה'''קוטר''' של גרף <math>G=(V,E)</math> מוגדר כמרחק המקסימאלי בין זוגות קדקודים - כלומר <math>\text{diam}(G)=\max_{u,v\in V}{d(v,u)}</math> | |||
===בניה=== | |||
עבור גרף לא מכוון <math>G=(V,E)</math> נגדיר יחס שקילות <math>\to </math> על <math>V</math>, כך: לכל <math> v,u\in V</math> מתקיים <math> v\to u</math> אמ"מ קיים מסלול מ<math>v</math> ל-<math>u</math> (כלומר <math>u \to v \iff d(v,u)<\infty </math>). | |||
'''תרגיל''': הוכח כי זהו יחס שקילות. | |||
''' | '''פתרון''': | ||
# ''רפלקסיבי'' - לכל קדקוד, המסלול <math>(v)</math> עושה את העבודה. | |||
# ''סימטרי'' - אם <math> v\to u</math>, אז יש מסלול <math> (v_0,\dots,v_n)</math> בין <math>v</math> ל-<math>u</math>. נביט במסלול ההפוך - <math> (v_n, v_{n-1}\dots ,v_1,v_0)</math> - זהו מסלול בין <math>u</math> ל-<math>v</math>, ולכן <math>u \to v</math>. | |||
# ''טרנזיטיבי'' - אם <math> v\to u</math> וגם <math> u\to t</math>, אז יש מסלולים <math> (v_1,\dots,v_n)</math> ו-<math> (v_1',\dots,v_n')</math>. היות ש-<math> v_n=v=v_1'</math>, נביט במסלול <math> (v_1,\dots,v_n=v_1',\dots,v_n')</math> - זהו מסלול המעיד על כך ש-<math> v\to t</math>. | |||
'''הגדרה''' מחלקות השקילות של יחס זה נקראים רכיבי קשירות. | |||
'''דוגמא''': ציור חביב לפי דעת המתרגל. | |||
=תרגילים נוספים= | |||
'''תרגיל''': יהי גרף לא מכוון <math>G=(V,E)</math> בעל <math>3\leq n</math> קדקודים. | |||
''' | |||
יהי גרף לא מכוון <math>G=(V,E)</math> בעל <math>3\leq n</math> | |||
אם בגרף <math>n\leq m </math> צלעות אזי בגרף יש מעגל. | אם בגרף <math>n\leq m </math> צלעות אזי בגרף יש מעגל. | ||
'''פתרון''': באינדוקציה. | |||
עבור <math>n=3</math> אזי יש מדובר במשולש (לא יכול להיות יותר מ -4 צלעות ב-3 | עבור <math>n=3</math> אזי יש מדובר במשולש (לא יכול להיות יותר מ -4 צלעות ב-3 קדקודים) ואכן מתקיים כי יש מעגל. | ||
נניח כי הטכנה נכונה עבור <math>n</math> ונוכיח עבור <math>n+1</math>. | נניח כי הטכנה נכונה עבור <math>n</math> ונוכיח עבור <math>n+1</math>. | ||
יהי יהי גרף לא מכוון <math>G=(V,E)</math> בעל <math>3< n+1</math> | יהי יהי גרף לא מכוון <math>G=(V,E)</math> בעל <math>3< n+1</math> קדקודים ו- <math>n+1\leq m </math> צלעות. | ||
אפשרות 1: קיים <math>v\in V</math> מדרגה 1. נוריד את | אפשרות 1: קיים <math>v\in V</math> מדרגה 1. נוריד את הקדקוד הזה (ואת כל הצלעות שחלות בו) ונקבל גרף חדש עם <math>n</math> קדקודים ו<math>n\leq m-1 </math> צלעות. לפי הנחת האינדוקציה קיים בו מעגל. מעגל זה קיים גם בגרף בו התחלנו. | ||
אפשרות 2: לכל | אפשרות 2: לכל קדקוד יש דרגה גדולה שווה 2. נבחר <math>v_0\in V</math> ונצא ממנו לאחד משכניו. מפה נמשיך למסלול רנדומאלי כך שאם הולכים מ <math>v\to u</math> הצעד הבא לא יהיה <math>u\to v</math> (זה אפשרי כי כל קדקוד יש לפחות 2 שכנים אז אם נכנסים אליו משכן א ניתן לצאת משכן ב). כיוון שיש מספר סופי של קדקודים נקבל חזרה על קדקוד בשלב כלשהו. בפעם הראשונה שנקבל חזרה קיבלנו מעגל! | ||
'''תרגיל''': יהי <math>G</math> גרף פשוט (ללא לולאות וללא צלעות מקבילות) מסדר <math>1<n</math>. הוכח שקיימים 2 קדקודים בעל אותה דרגה. | |||
נבנה פונקציה <math>f:V\to \{0,1,\dots n-1\} </math> המוגדרת <math>v\mapsto deg(v)</math>. | '''פתרון:''' נבנה פונקציה <math>f:V\to \{0,1,\dots n-1\} </math> המוגדרת <math>v\mapsto deg(v)</math>. | ||
אם קיים | אם קיים קדקוד מדרגה n-1 אזי הוא מחובר לכולם ולכן אין קדקוד מדרגה אפס. במקרה זה נוכל להגדיר | ||
<math>f:V\to \{1,\dots n-1\} </math>. | <math>f:V\to \{1,\dots n-1\} </math>. | ||
אם אין | אם אין קדקוד כזה אז נוכל להגדיר <math>f:V\to \{0,1,\dots n-2\} </math>. | ||
בשני המקרים קיבלנו כי <math>|dom(f)|=|V|=n, |Im(f)|=n-1</math> ולכן <math>f</math> אינה חח"ע. | בשני המקרים קיבלנו כי <math>|dom(f)|=|V|=n, |Im(f)|=n-1</math> ולכן <math>f</math> אינה חח"ע. | ||
כלומר קיימים <math>v_1\neq v_2</math> כך ש <math>f(v_1)=f(v_2)</math> כלומר בעלי דרגה שווה | כלומר קיימים <math>v_1\neq v_2</math> כך ש <math>f(v_1)=f(v_2)</math> כלומר בעלי דרגה שווה | ||
'''תרגיל''': יהיה <math>G=(V,E)</math> גרף פשוט עם 100 קדקודים כך שדרגת כל קדקוד לפחות 50. הוכח כי <math>G</math> קשיר. | |||
== | '''פתרון''': יהיו <math>v,u\in V</math> צריך להוכיח כי <math>[v]=[u]</math> (כך נסמן את רכיב הקשירות). | ||
נניח כי הם שונים אזי ב<math>|[v]|,|[u]|\geq 50</math> והם זרים. לכן <math>[v]=[u]=50</math> אבל ברכיב קשירות שיש בו 50 קדקודים דרגת כל קדקוד קטנה שווה ל 49. סתירה | |||
'''תרגיל''': יהי גרף לא מכוון <math>G=(V,E)</math>. הוכח כי אם <math>\forall v\in V : \text{degree}(v)\geq 2</math> אז בגרף יש מעגל. | |||
'''פתרון''': בגרף יש יותר מ 2 קדקודים (אחרת לא יהיה להם 2 שכנים). | |||
לפי משפט לחיצת הידיים מתקיים <math>2|E|= \sum_{v\in V}\text{degree}(v)\geq \sum_{v\in V}2 =2|V|</math> | לפי משפט לחיצת הידיים מתקיים <math>2|E|= \sum_{v\in V}\text{degree}(v)\geq \sum_{v\in V}2 =2|V|</math> | ||
ולכן מספר הצלעות גדול שווה ממספר | ולכן מספר הצלעות גדול שווה ממספר הקדקודים. לפי משפט קודם קיים מעגל בגרף. | ||
יהי גרף לא מכוון <math>G=(V,E)</math> ללא מעגלים עם <math>|V|\geq 2</math>. הוכח כי קיימים <math>v_1,v_2\in V</math> כך שדרגתם לכל היותר 1. | '''תרגיל''': יהי גרף לא מכוון <math>G=(V,E)</math> ללא מעגלים עם <math>|V|\geq 2</math>. הוכח כי קיימים <math>v_1,v_2\in V</math> כך שדרגתם לכל היותר 1. | ||
'''פתרון''': לפי תרגיל קודם קיים <math>v\in V</math> כך שדרגתו לכל היותר 1 (אחרת לכל הקדקודים יש דרגה לפחות 2 ואז יש מעגל לפי תרגיל קודם. סתירה!). | |||
נמשיך באינדוקציה על <math>n</math> מספר | נמשיך באינדוקציה על <math>n</math> מספר הקדקודים בגרף. | ||
אם <math>n=2</math> אזי או שהגרף הוא 2 נקודות לא צלעות או 2 נקודות המחוברות בצלע. בכל מקרה 2 הנקודות של הגרף הם מדרגה קטנה שווה ל-1. | אם <math>n=2</math> אזי או שהגרף הוא 2 נקודות לא צלעות או 2 נקודות המחוברות בצלע. בכל מקרה 2 הנקודות של הגרף הם מדרגה קטנה שווה ל-1. | ||
שורה 133: | שורה 117: | ||
כעת נניח כי הטענה נכונה עבור <math>n\geq 2</math>. נוכיח את הטענה עבור <math>n+1</math>. | כעת נניח כי הטענה נכונה עבור <math>n\geq 2</math>. נוכיח את הטענה עבור <math>n+1</math>. | ||
נבחר את | נבחר את הקדקוד <math>v\in V</math> שדרגתו לכל היותר 1. נוריד אותו ואת הצלע שחלה בו אזי נקבל גרף עם <math>n</math> קדקודים. לפי הנחת האינדוקציה יש בו 2 קדקודים<math>v_1,v_2</math> בעלי דרגה 1 לכל היותר. כעת נשוב לגרף המקורי (הכולל את <math>v</math> שהשמטנו). | ||
אם <math>v</math> שכן של <math>v_1</math> אזי <math>v,v_2</math> בעלי דרגה לכל היותר 1. | אם <math>v</math> שכן של <math>v_1</math> אזי <math>v,v_2</math> בעלי דרגה לכל היותר 1. | ||
שורה 143: | שורה 127: | ||
אם <math>v</math> לא שכן של <math>v_1,v_2</math> אזי <math>v,v_1,v_2</math> בעלי דרגה לכל היותר 1. | אם <math>v</math> לא שכן של <math>v_1,v_2</math> אזי <math>v,v_1,v_2</math> בעלי דרגה לכל היותר 1. | ||
בכל מקרה קיבלנו כי קיימים 2 | בכל מקרה קיבלנו כי קיימים 2 קדקודים בעלי דרגה 1 לכל היותר!. |
גרסה מ־19:05, 11 באוגוסט 2015
הגדרות בסיסיות
הגדרה: גרף [math]\displaystyle{ G }[/math] מעל קבוצה [math]\displaystyle{ V }[/math] הוא זוג סדור [math]\displaystyle{ G=(V,E) }[/math] כאשר math>E \subseteq V\times V</math> - כלומר קבוצה המכילה זוגות סדורים מאיברי [math]\displaystyle{ V }[/math].
הקבוצה [math]\displaystyle{ V }[/math] היא קבוצת הקדקודים של הגרף, והקבוצה [math]\displaystyle{ E }[/math] היא קבוצת הקשתות/צלעות של הגרף.
הגדרה: הסדר של גרף [math]\displaystyle{ G=(V,E) }[/math] הוא [math]\displaystyle{ |V| }[/math]. גרף יקרא סופי אם הסדר שלו סופי, וקבוצת הקשתות [math]\displaystyle{ E }[/math] סופית.
הגדרה: גרף [math]\displaystyle{ G }[/math] ייקרא לא מכוון אם היחס [math]\displaystyle{ E }[/math] הוא סימטרי, כלומר אין משמעות לכיוון הצלע. אחרת הגרף ייקרא מכוון. בגרף לא מכוון, אין משמעות לכיוון הצלע, ולכן לעתים מסמנים [math]\displaystyle{ (u,v) }[/math] בתור [math]\displaystyle{ \{u,v\} }[/math].
דוגמא: [math]\displaystyle{ V=\{1,2,3\}, E=\Big\{\{1,2\},\{2,3\},\{1,3\}\Big\} }[/math] מייצג משולש. הסדר שלו הוא 3, כמספר הצלעות במשולש, ובפרט הוא סופי.
הערה: שימו לב שמהניסוח לעיל נובע-
- בגרף יכולה להיות קשת מקדקוד אל עצמו (לולאה). זה שקול ל- [math]\displaystyle{ \exists (v,v) \in E }[/math].
- צלע בין שני קדקודים יכולה להופיע אך ורק פעם אחת (כי [math]\displaystyle{ E }[/math] קבוצה). בפועל, יש גרפים שבהם מופיעה יותר מצלע אחת בין שני קדקודים (למשל שתי לולאות סביב נקודה). נסו לחשוב איך להגדיר את זה פורמלית.
הבהרה: אנחנו נעסוק בגרפים סופיים, לא מכוונים, בלי צלעות כפולות ובלי לולאות.
הגדרה יהיה [math]\displaystyle{ G=(V,E) }[/math]. נאמר כי [math]\displaystyle{ v,w\in V }[/math] שכנים אם [math]\displaystyle{ (v,w)\in E }[/math]. במקרה זה נאמר כי הצלע [math]\displaystyle{ \{v,w\}\in E }[/math] חלה ב [math]\displaystyle{ w }[/math] (או חלה ב [math]\displaystyle{ v }[/math])
את קבוצת השכנים של [math]\displaystyle{ u }[/math] מסמנים [math]\displaystyle{ \Gamma(u)=\{v\in V \; :\; \{v,u\}\in E\} }[/math].
הדרגה של [math]\displaystyle{ u }[/math], המסומנת [math]\displaystyle{ \text{degree}(u) }[/math], היא מספר הצלעות החלות ב [math]\displaystyle{ u }[/math], כלומר [math]\displaystyle{ |\Gamma(u)| }[/math].
דוגמא: במשולש, כל 2 קדקודים שכנים. כל קדקוד מדרגה 2: השכנים של כל קדקוד הם שני הקדקודים האחרים.
משפט (לחיצת הידיים)
יהי [math]\displaystyle{ G=(V,E) }[/math] גרף לא מכוון. אזי [math]\displaystyle{ \sum_{v\in V}\text{degree}(v)=2|E| }[/math].
תרגיל
נאמר כי גרף [math]\displaystyle{ G=(V,E) }[/math] הוא [math]\displaystyle{ k }[/math]-רגולרי אם כל הדרגה של כל קדקוד שווה ל-[math]\displaystyle{ k }[/math].
הוכח כי אם [math]\displaystyle{ k,n }[/math] אי-זוגיים, לא קיים גרף [math]\displaystyle{ k }[/math]-רגולרי מסדר [math]\displaystyle{ n }[/math].
הוכחה:
לפי משפט לחיצת הידיים [math]\displaystyle{ 2|E|=\sum_{v\in V}\text{degree}(v)=n\cdot k }[/math]. אבל מכפלה של מספרים אי זוגיים היא אי-זוגית, ולכן [math]\displaystyle{ k }[/math] זוגי או [math]\displaystyle{ n }[/math] זוגי.
הגדרות נוספות
יהי [math]\displaystyle{ G=(V,E) }[/math] גרף לא מכוון. סדרת קדקודים (סדורה) [math]\displaystyle{ (v_0,v_1,\dots,v_n) }[/math] נקראת מסלול אם [math]\displaystyle{ \forall i : \{v_i,v_{i+1}\}\in E }[/math] וגם כל הצלעות שונות - כלומר לכל [math]\displaystyle{ i\neq j }[/math] מתקיים [math]\displaystyle{ (v_i,v_{i+1}) \neq (v_j,v_{j+1}) }[/math].
מסלול יקרא פשוט אם כל הקדקודים [math]\displaystyle{ (v_0,v_1,\dots,v_n) }[/math] שונים זה מזה, פרט אולי ל [math]\displaystyle{ v_0=v_n }[/math], ובמקרה זה המסלול נקרא מעגל. אורך המסלול [math]\displaystyle{ (v_0,v_1,\dots,v_n) }[/math] הוא [math]\displaystyle{ n }[/math], והנקודות [math]\displaystyle{ v_0 }[/math] ו-[math]\displaystyle{ v_n }[/math] נקראות נקודות ההתחלה והסיום של המסלול.
הגדרה: המרחק בין [math]\displaystyle{ v,u\in V }[/math] הוא המסלול עם אורך מינימלי בין [math]\displaystyle{ v,u\in V }[/math]. אם אין מסלול בין הנקודות, אומרים שהמרחק הוא אינסוף. מסמנים את המרחק [math]\displaystyle{ d(u,v) }[/math], ואם יש צורך להדגיש את הגרפים אז מסמנים [math]\displaystyle{ d_G(u,v) }[/math].
הקוטר של גרף [math]\displaystyle{ G=(V,E) }[/math] מוגדר כמרחק המקסימאלי בין זוגות קדקודים - כלומר [math]\displaystyle{ \text{diam}(G)=\max_{u,v\in V}{d(v,u)} }[/math]
בניה
עבור גרף לא מכוון [math]\displaystyle{ G=(V,E) }[/math] נגדיר יחס שקילות [math]\displaystyle{ \to }[/math] על [math]\displaystyle{ V }[/math], כך: לכל [math]\displaystyle{ v,u\in V }[/math] מתקיים [math]\displaystyle{ v\to u }[/math] אמ"מ קיים מסלול מ[math]\displaystyle{ v }[/math] ל-[math]\displaystyle{ u }[/math] (כלומר [math]\displaystyle{ u \to v \iff d(v,u)\lt \infty }[/math]).
תרגיל: הוכח כי זהו יחס שקילות.
פתרון:
- רפלקסיבי - לכל קדקוד, המסלול [math]\displaystyle{ (v) }[/math] עושה את העבודה.
- סימטרי - אם [math]\displaystyle{ v\to u }[/math], אז יש מסלול [math]\displaystyle{ (v_0,\dots,v_n) }[/math] בין [math]\displaystyle{ v }[/math] ל-[math]\displaystyle{ u }[/math]. נביט במסלול ההפוך - [math]\displaystyle{ (v_n, v_{n-1}\dots ,v_1,v_0) }[/math] - זהו מסלול בין [math]\displaystyle{ u }[/math] ל-[math]\displaystyle{ v }[/math], ולכן [math]\displaystyle{ u \to v }[/math].
- טרנזיטיבי - אם [math]\displaystyle{ v\to u }[/math] וגם [math]\displaystyle{ u\to t }[/math], אז יש מסלולים [math]\displaystyle{ (v_1,\dots,v_n) }[/math] ו-[math]\displaystyle{ (v_1',\dots,v_n') }[/math]. היות ש-[math]\displaystyle{ v_n=v=v_1' }[/math], נביט במסלול [math]\displaystyle{ (v_1,\dots,v_n=v_1',\dots,v_n') }[/math] - זהו מסלול המעיד על כך ש-[math]\displaystyle{ v\to t }[/math].
הגדרה מחלקות השקילות של יחס זה נקראים רכיבי קשירות.
דוגמא: ציור חביב לפי דעת המתרגל.
תרגילים נוספים
תרגיל: יהי גרף לא מכוון [math]\displaystyle{ G=(V,E) }[/math] בעל [math]\displaystyle{ 3\leq n }[/math] קדקודים. אם בגרף [math]\displaystyle{ n\leq m }[/math] צלעות אזי בגרף יש מעגל.
פתרון: באינדוקציה.
עבור [math]\displaystyle{ n=3 }[/math] אזי יש מדובר במשולש (לא יכול להיות יותר מ -4 צלעות ב-3 קדקודים) ואכן מתקיים כי יש מעגל.
נניח כי הטכנה נכונה עבור [math]\displaystyle{ n }[/math] ונוכיח עבור [math]\displaystyle{ n+1 }[/math]. יהי יהי גרף לא מכוון [math]\displaystyle{ G=(V,E) }[/math] בעל [math]\displaystyle{ 3\lt n+1 }[/math] קדקודים ו- [math]\displaystyle{ n+1\leq m }[/math] צלעות.
אפשרות 1: קיים [math]\displaystyle{ v\in V }[/math] מדרגה 1. נוריד את הקדקוד הזה (ואת כל הצלעות שחלות בו) ונקבל גרף חדש עם [math]\displaystyle{ n }[/math] קדקודים ו[math]\displaystyle{ n\leq m-1 }[/math] צלעות. לפי הנחת האינדוקציה קיים בו מעגל. מעגל זה קיים גם בגרף בו התחלנו.
אפשרות 2: לכל קדקוד יש דרגה גדולה שווה 2. נבחר [math]\displaystyle{ v_0\in V }[/math] ונצא ממנו לאחד משכניו. מפה נמשיך למסלול רנדומאלי כך שאם הולכים מ [math]\displaystyle{ v\to u }[/math] הצעד הבא לא יהיה [math]\displaystyle{ u\to v }[/math] (זה אפשרי כי כל קדקוד יש לפחות 2 שכנים אז אם נכנסים אליו משכן א ניתן לצאת משכן ב). כיוון שיש מספר סופי של קדקודים נקבל חזרה על קדקוד בשלב כלשהו. בפעם הראשונה שנקבל חזרה קיבלנו מעגל!
תרגיל: יהי [math]\displaystyle{ G }[/math] גרף פשוט (ללא לולאות וללא צלעות מקבילות) מסדר [math]\displaystyle{ 1\lt n }[/math]. הוכח שקיימים 2 קדקודים בעל אותה דרגה.
פתרון: נבנה פונקציה [math]\displaystyle{ f:V\to \{0,1,\dots n-1\} }[/math] המוגדרת [math]\displaystyle{ v\mapsto deg(v) }[/math].
אם קיים קדקוד מדרגה n-1 אזי הוא מחובר לכולם ולכן אין קדקוד מדרגה אפס. במקרה זה נוכל להגדיר [math]\displaystyle{ f:V\to \{1,\dots n-1\} }[/math].
אם אין קדקוד כזה אז נוכל להגדיר [math]\displaystyle{ f:V\to \{0,1,\dots n-2\} }[/math].
בשני המקרים קיבלנו כי [math]\displaystyle{ |dom(f)|=|V|=n, |Im(f)|=n-1 }[/math] ולכן [math]\displaystyle{ f }[/math] אינה חח"ע. כלומר קיימים [math]\displaystyle{ v_1\neq v_2 }[/math] כך ש [math]\displaystyle{ f(v_1)=f(v_2) }[/math] כלומר בעלי דרגה שווה
תרגיל: יהיה [math]\displaystyle{ G=(V,E) }[/math] גרף פשוט עם 100 קדקודים כך שדרגת כל קדקוד לפחות 50. הוכח כי [math]\displaystyle{ G }[/math] קשיר.
פתרון: יהיו [math]\displaystyle{ v,u\in V }[/math] צריך להוכיח כי [math]\displaystyle{ [v]=[u] }[/math] (כך נסמן את רכיב הקשירות). נניח כי הם שונים אזי ב[math]\displaystyle{ |[v]|,|[u]|\geq 50 }[/math] והם זרים. לכן [math]\displaystyle{ [v]=[u]=50 }[/math] אבל ברכיב קשירות שיש בו 50 קדקודים דרגת כל קדקוד קטנה שווה ל 49. סתירה
תרגיל: יהי גרף לא מכוון [math]\displaystyle{ G=(V,E) }[/math]. הוכח כי אם [math]\displaystyle{ \forall v\in V : \text{degree}(v)\geq 2 }[/math] אז בגרף יש מעגל.
פתרון: בגרף יש יותר מ 2 קדקודים (אחרת לא יהיה להם 2 שכנים). לפי משפט לחיצת הידיים מתקיים [math]\displaystyle{ 2|E|= \sum_{v\in V}\text{degree}(v)\geq \sum_{v\in V}2 =2|V| }[/math] ולכן מספר הצלעות גדול שווה ממספר הקדקודים. לפי משפט קודם קיים מעגל בגרף.
תרגיל: יהי גרף לא מכוון [math]\displaystyle{ G=(V,E) }[/math] ללא מעגלים עם [math]\displaystyle{ |V|\geq 2 }[/math]. הוכח כי קיימים [math]\displaystyle{ v_1,v_2\in V }[/math] כך שדרגתם לכל היותר 1.
פתרון: לפי תרגיל קודם קיים [math]\displaystyle{ v\in V }[/math] כך שדרגתו לכל היותר 1 (אחרת לכל הקדקודים יש דרגה לפחות 2 ואז יש מעגל לפי תרגיל קודם. סתירה!).
נמשיך באינדוקציה על [math]\displaystyle{ n }[/math] מספר הקדקודים בגרף.
אם [math]\displaystyle{ n=2 }[/math] אזי או שהגרף הוא 2 נקודות לא צלעות או 2 נקודות המחוברות בצלע. בכל מקרה 2 הנקודות של הגרף הם מדרגה קטנה שווה ל-1.
כעת נניח כי הטענה נכונה עבור [math]\displaystyle{ n\geq 2 }[/math]. נוכיח את הטענה עבור [math]\displaystyle{ n+1 }[/math].
נבחר את הקדקוד [math]\displaystyle{ v\in V }[/math] שדרגתו לכל היותר 1. נוריד אותו ואת הצלע שחלה בו אזי נקבל גרף עם [math]\displaystyle{ n }[/math] קדקודים. לפי הנחת האינדוקציה יש בו 2 קדקודים[math]\displaystyle{ v_1,v_2 }[/math] בעלי דרגה 1 לכל היותר. כעת נשוב לגרף המקורי (הכולל את [math]\displaystyle{ v }[/math] שהשמטנו).
אם [math]\displaystyle{ v }[/math] שכן של [math]\displaystyle{ v_1 }[/math] אזי [math]\displaystyle{ v,v_2 }[/math] בעלי דרגה לכל היותר 1.
אם [math]\displaystyle{ v }[/math] שכן של [math]\displaystyle{ v_2 }[/math] אזי [math]\displaystyle{ v,v_1 }[/math] בעלי דרגה לכל היותר 1.
אם [math]\displaystyle{ v }[/math] שכן של [math]\displaystyle{ v_1,v_2 }[/math] - סתירה כי הדרגה של [math]\displaystyle{ v }[/math] היא 1 לכל היותר.
אם [math]\displaystyle{ v }[/math] לא שכן של [math]\displaystyle{ v_1,v_2 }[/math] אזי [math]\displaystyle{ v,v_1,v_2 }[/math] בעלי דרגה לכל היותר 1.
בכל מקרה קיבלנו כי קיימים 2 קדקודים בעלי דרגה 1 לכל היותר!.