88-112 תשעו סמסטר א/תרגילי אתגר: הבדלים בין גרסאות בדף

מתוך Math-Wiki
אין תקציר עריכה
אין תקציר עריכה
שורה 19: שורה 19:
===תרגיל אתגר 3===
===תרגיל אתגר 3===


[[מדיה:LinAlg1ChallengeEx3.pdf|תרגיל אתגר 3]]
[[מדיה:LinAlg1ChallengeEx3.pdf|תרגיל אתגר 3]], [[מדיה:LinAlg1ChallengeEx3-sol.pdf|פתרון]].


בתרגיל זה נשאל את השאלה הבאה: אם <math>A\in\mathbb{F}^{n\times n}</math> מתחלפת עם כל המטריצות, כלומר לכל <math>B\in\mathbb{F}^{n\times n}</math> מתקיים <math>AB=BA</math>, מיהי <math>A</math>?
בתרגיל זה נשאל את השאלה הבאה: אם <math>A\in\mathbb{F}^{n\times n}</math> מתחלפת עם כל המטריצות, כלומר לכל <math>B\in\mathbb{F}^{n\times n}</math> מתקיים <math>AB=BA</math>, מיהי <math>A</math>?
===תרגיל אתגר 4===
[[מדיה:LinAlg1ChallengeEx4.pdf|תרגיל אתגר 4]]
התרגיל הזה הגיע בעקבות שאלה ששאלתם בתרגול השני על מטריצות: מה הקשר בין יחסים סימטריים למטריצות סימטריות?
===תרגיל אתגר 5===
[[מדיה:LinAlg1ChallengeEx5.pdf|תרגיל אתגר 5]]
אם מסתכלים על <math>\mathbb{R}</math>, יש עליו כמה מבנים נוספים מעבר לכך שהוא שדה. למשל, יש לנו יחס סדר מלא עליו, שמתנהג בצורה מאוד נחמדה ביחס לפעולות של השדה. בתרגיל הזה תעסקו בשדות שיש עליהם יחס סדר כזה.

גרסה מ־20:55, 30 בנובמבר 2015

חזרה לדף הקורס

התרגילים המפורסמים פה הם תרגילי אתגר. הם אינם להגשה, אלא להעשרה ולהעמקה למי שרוצה לנסות לאתגר את עצמו. בתרגילים אלו לפעמים יופיעו בעיות קשות יותר מן הבעיות המופיעות לרוב בקורס, ולפעמים יוצגו מושגים חדשים ומטרת התרגיל תהיה להכיר אותו ולהוכיח עליו תכונות בסיסיות.

כשבוע-שבועיים לאחר פרסום התרגיל יתפרסם פתרונו.

תרגיל אתגר 1

תרגיל אתגר 1, פתרון.

נושא התרגיל הוא שדות. למעשה, בתרגיל זה מוצגת הבנייה הפורמלית של שדה המספרים המרוכבים [math]\displaystyle{ \mathbb{C} }[/math].

תרגיל אתגר 2

תרגיל אתגר 2, פתרון.

נושא התרגיל הוא מערכות משוואות לינאריות. בתרגיל זה תוכיחו שכל מערכת אינסופית של משוואות לינאריות במספר סופי של משתנים שקולה למערכת עם מספר סופי של משוואות.

תרגיל אתגר 3

תרגיל אתגר 3, פתרון.

בתרגיל זה נשאל את השאלה הבאה: אם [math]\displaystyle{ A\in\mathbb{F}^{n\times n} }[/math] מתחלפת עם כל המטריצות, כלומר לכל [math]\displaystyle{ B\in\mathbb{F}^{n\times n} }[/math] מתקיים [math]\displaystyle{ AB=BA }[/math], מיהי [math]\displaystyle{ A }[/math]?

תרגיל אתגר 4

תרגיל אתגר 4

התרגיל הזה הגיע בעקבות שאלה ששאלתם בתרגול השני על מטריצות: מה הקשר בין יחסים סימטריים למטריצות סימטריות?

תרגיל אתגר 5

תרגיל אתגר 5

אם מסתכלים על [math]\displaystyle{ \mathbb{R} }[/math], יש עליו כמה מבנים נוספים מעבר לכך שהוא שדה. למשל, יש לנו יחס סדר מלא עליו, שמתנהג בצורה מאוד נחמדה ביחס לפעולות של השדה. בתרגיל הזה תעסקו בשדות שיש עליהם יחס סדר כזה.